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Abstract

Brillouin scattering is an opto-mechanical interaction that couples between optical and acoustic
waves in a common medium. The phenomenon has been studied in standard fibers for over 50
years, and it may take place in either the backward or forward directions. In backward
interactions, two counter-propagating optical field components may stimulate a longitudinal
acoustic mode that is guided in the core of the fiber. In forward Brillouin scattering, two co-
propagating optical fields couple with a predominantly transverse acoustic mode that is guided
by the entire cladding cross-section. Forward Brillouin scattering in single mode fibers has been
formulated and reported in 1985. Interest in the effect has increased in recent years, towards
sensing of substances outside the boundaries of standard cladding, where guided light does not
reach. The decay rates of the acoustic modes in forward Brillouin scattering interactions are
affected by the elastic boundary conditions at the edge of the cladding, and their monitoring

enables the analysis of surrounding media.

Most studies of forward Brillouin scattering in standard fibers were carried out in the single-mode
regime. A pair of optical fields in the fundamental, single mode may only stimulate acoustic modes
of two specific classes: purely radial ones, and modes of two-fold azimuthal symmetry. Although
the fiber cladding supports guided acoustic modes of any integer order of azimuthal symmetry,
other classes of acoustic modes cannot be addressed through forward Brillouin scattering in
single-mode fibers. The efficiency of forward Brillouin scattering scales with the spatial overlap
between the transverse profiles of the optical and acoustic modes involved. In standard single-
mode fibers, that overlap is maximal for acoustic modes of frequencies between 200-600 MHz.
The effect diminishes strongly at higher acoustic frequencies. Lastly, forward Brillouin stimulation
of acoustic modes in single-mode fibers is only possible at their cut-off frequencies. At that limit,
the acoustic modes are almost entirely transverse, and their axial wavenumbers are vanishingly

small.

Over the last decade, few-mode optical fibers have taken an increasing role in space-division
multiplexing of optical telecommunication channels, and they have also found many sensing
applications. The number of mode groups supported by the fiber can be controlled through the
dimensions and index contrast of the core. Few-mode fibers provide additional degrees of

freedom for Brillouin scattering interactions, as the optical fields that take part in the process may



be guided in different spatial modes. Brillouin scattering interactions through multiple guided
optical modes have been reported in photonic integrated waveguides and in thin tapered fibers.
Backward Brillouin scattering interactions have been investigated in standard few-mode fibers,
and they were used towards strain and temperature sensing and for modal dispersion analysis.
The forward effect has been studied in standard, panda-type polarization maintaining fibers, in
which the two polarization modes are non-degenerate. However, the difference in effective
indices between the two principal states of the fiber is comparatively small, in the fourth decimal
point. In addition, the guided acoustic modes of the panda-type fiber cannot be solved analytically
and do not maintain regular azimuthal symmetries. Forward Brillouin scattering in standard few-

mode fibers has yet to be examined.

In this work, | report the analysis, calculations, and experimental demonstration of forward
Brillouin scattering in a step-index few-mode fiber with standard, uniform cladding. The spectrum
of forward Brillouin scattering is formulated for the launch of each of the optical fields involved
in an arbitrary guided mode. The experimental setup supported selective coupling of light to the
fundamental LPy; mode, the LP,, mode, or the LP;; mode group of a few-mode fiber. The results
show that forward Brillouin scattering in the LP,, mode reaches acoustic frequencies up to 1.8
GHz, much higher than in the fundamental mode. The measurements demonstrate the Brillouin
stimulation of additional classes of acoustic modes, with first-order and fourth-order azimuthal
symmetries, which are inaccessible through the corresponding process in single-mode fibers.
Further, inter-modal interactions between optical waves in the LP,; and LP,, modes stimulate
acoustic modes that are detuned from their cut-off frequencies by few MHz. Certain inter-modal
forward Brillouin interactions signify the transfer of angular momentum quanta between the
orbital degrees of freedom of optical and acoustic waves. The results extend the formulation and
scope of fiber opto-mechanics beyond the single-mode regime, and they may find applications in

fiber lasers, sensing, and quantum states manipulation.



1. Background

1.1. Optical fibers

For decades, the demands for ever higher data communication rates keep growing exponentially.
The nearly exclusive technological solution for long-reach, high-rate communication has been
optical transmission over silica-based fibers. Optical fibers are dielectric waveguides which exhibit
ultra-low losses of only 0.2 dB/km at 1550 nm wavelength [1]. In addition to communication,
optical fibers are also utilized as sensors for various metrics of interests, including temperature,

deformations, sound and vibrations, and various chemicals [2,3].

The optical fiber is composed of two distinct sections: an inner core region, with a radius of few
microns, and an outer cladding layer, usually 125 microns in diameter. The core is doped with few
percent of germanium to achieve slightly higher refractive index than that of the cladding. The
difference in refractive indices between the core and the cladding, in the order of 0.01 [RIU],
enables the propagation of light in guided core modes [1]. Mostly, the core radius and doping are
chosen so that only a single spatial mode may be guided within the core of the fiber. These single-
mode fibers (SMFs) are free of modal dispersion, and they enable the transfer of Thits/s of data

over thousands of kilometers [1].

1.2.  Brillouin scattering in standard optical fibers

1.2.1. Backward scattering: applications in lasers and sensing
Brillouin scattering refers to the nonlinear effect in which light and acoustic waves interact with
each other. The effect was first proposed by Leon Brillouin in 1922 [4]. It was first observed in
liquids in 1964 [5] and demonstrated in optical fibers in 1972 [6]. Brillouin scattering in standard

fibers may take place in either the backward or forward directions [6-13].

In backward stimulated Brillouin scattering (backward SBS or B-SBS), two counter-propagating
optical fields, detuned by a radio-frequency offset, induce a propagating beating pattern along
the fiber axis [6,12,13]. The axial wavenumber of the travelling beating pattern equals the sum of
the wavenumbers of the two optical fields, and its temporal frequency equals the spectral offset
between the fields. The intensity beating gives rise to an axial mechanical force, which may excite

acoustic core modes with the same wavenumber and frequency of the beating pattern [6,12,13].



Acoustic waves are effectively stimulated when both wavenumber and frequency of the optical
beating pattern match those of a guided acoustic mode. That condition is met for a specific
acoustic frequency, known as the Brillouin frequency shift (g. In standard SMFs at 1550 nm
wavelength, Qp = 2 X 10.85 GHz. The linewidth of the acoustic wave is determined by their
lifetime: about 2w X 30 MHz. The acoustic wave, in turn, induces perturbations to the refractive
index in the fiber core and creates a moving grating, travelling alongside the acoustic wave. The
grating may couple between the two input optical fields, resulting in a positive feedback loop
(Figure 1). The entire process may lead to the exponential amplification of the lower frequency

tone (signal) at the expense of the higher frequency one (pump) [6,12,13].
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Figure 1 — Schematic illustartion of mechanisms that provide a postive feedback in backward SBS over standard fibers.
Image curtsy Luc Thévenaz, EPFL.

The backward SBS effect can be utilized for sensing [14,15]: The Brillouin frequency shift is
governed by the dilatational acoustic velocity in the silica, as well as the effective index of the
optical core mode. Outside conditions, such as axial strain and temperature, may affect the elastic
and optical material properties of the fiber, and shift the resonance frequency of the acoustic
mode [14]. Since the pump and signal propagate in opposite directions, the Brillouin scattering
spectra may be spatially resolved based on time-of-flight analysis [14]. Therefore, B-SBS
measurements support spatially distributed analysis of local strain and temperature conditions
[14]. Brillouin fiber sensors reach millimeter-scale spatial resolution [16-19], hundreds of

kilometers range [20,21], and precision of sub-degree centigrade and ppm-level strain [22,23].

B-SBS serves as an amplifier for the optical signal at the expense of the pump wave. When the
fiber is placed in a feedback loop, spontaneous backward scattering of the pump wave might
reach a lasing threshold, resulting in a lasing signal. Fiber laser based on backward SBS was first

demonstrated in 1991 using a ring configuration [24], exhibiting ultra-narrow linewidths of few
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kHz. Backward Brillouin fiber lasers are used in microwave-photonic signal generation and
processing [25], and in fiber-optic gyroscopes [26]. They were also demonstrated in micro-

resonator and integrated-photonic platforms [27-31].

1.2.2. Forward Brillouin scattering
In forward stimulated Brillouin scattering (forward SBS or F-SBS), the two optical pump waves
participating in the process co-propagate along the fiber axis. The two pump waves induce an
electro-strictive driving force, propagating at the beating frequency Q between the pumps. The
electro-strictive driving force in the forward scattering case is mostly confined to the transverse
plane. This driving force may excite acoustic waves with the same radio-frequency Q. Unlike the
backward effect, the stimulated acoustic modes span the entire cross-section of the fiber cladding

[32].

The most general category of acoustic modes supported by the cylindrical uniform fiber cladding
is referred to as the torsional-radial (TR) acoustic modes TR, . The transverse profiles of material
displacement are described by an integer azimuthal order p = 0 and an integer radial order
m = 1. Each TR mode is characterized by a cut-off frequency €1, ,,, below which it may no longer
propagate in the axial direction. Close to their cut-offs, the axial components of the phase
velocities of the acoustic modes approach infinity. The material displacement vectors of the
modes in that limit become predominantly transverse [7,8]. Maximum excitation of the acoustic
modes is achieved when the material displacement and electro-strictive driving force at frequency
Q are of equal axial wavenumbers. In standard SMFs, phase matching is achieved in radio-
frequencies very close to the cut-off (A ~ Q,,,), where the phase velocity of the acoustic mode

may equal to the speed of light in the fiber [7,8].

In SMFs, not all the TR modes are accessible through electro-strictive excitation. Given the one-
fold azimuthal symmetry of the fundamental optical mode, the induced electro-strictive force
includes only two terms: one that is radially symmetric, and another that follows two-fold
azimuthal symmetry [7,11]. For that reason, light waves guided in the single core mode may only
excite two classes of acoustic modes: the purely radial ones known as Ry,,,, and the TR,,,, modes

[7,8,11].

The acoustic waves stimulated by electro-striction may scatter an additional optical probe wave

through photoelasticity [7,33-35]. Acoustic waves are associated with local deformation of the
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medium, which may be expressed in terms of strain. The deformations, in turn, modify the
dielectric properties of the fiber medium. The dielectric perturbations themselves propagate
along the fiber, hand-in-hand with the acoustic mode, at frequency () and with the phase velocity
of guided light. The perturbations scatter the probe wave to multiple sidebands and may lead to
its phase modulation (in the case of purely radial acoustic modes Rg,;,) or to phase modulation
combined with polarization rotation (for any arbitrary TR,,, mode) [11]. In addition, the two
optical pump tones that stimulate the acoustic mode in the first place are also coupled by that

wave: the lower-frequency tone is amplified in the expense of the higher-frequency tone [11].
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Figure 2 — Dispersion relations between temporal frequency and axial wavenumber in forward SBS. The optical core
mode is represented by a dashed blue line, and one guided acoustic mode is represented by dashed green curve with a
cut-off frequency. (a) Schematic illustration of the phase matching requirement between the electro-strictive driving
force induced by two pump fields (E ,, frequencies wq + 2/2, wavenumbers n(wq + 2/2)/c) and a guided acoustic
mode. The electro-strictive force takes up frequency 2 and wavenumber K = nf)/c. Stimulation is possible for
acoustic modes of the same (2, and axial wavenumber q = K. That condition implies that the axial phase velocity of
the acoustic mode equals the speed of light in the fiber. The condition may be met close to the cut-off frequency of the
acoustic mode, where its axial phase velocity approaches infinity. (b) lllustration of a probe wave scattered to multiple
side-bands by photo-elastic perturbations associated with the acoustic mode, resulting in its phase modulation [11].

1.3.  Forward Brillouin scattering sensing of media outside the fiber

cladding

In recent years, the F-SBS effect has raised a growing interest towards the sensing of substances
outside the boundaries of standard fiber cladding, where guided light does not reach [11,36-51].
Sensing towards forward SBS was first demonstrated by Antman, London and Clain from our
group in 2016, through the radial guided acoustic modes Ry, [36]. In that case, the acoustic waves
are entirely dilatational in the radial direction. When the fiber is stripped of its protective coating,
acoustic waves in the cladding can interact with the outside medium. The decay rates of the

acoustic modes are affected by the elastic boundary conditions at the edge of the cladding, and
4



they may vary between different substances outside the fiber. The decay rates manifest in the
spectral linewidths of the acoustic modes, and their monitoring enables the analysis of the

surrounding media [36].

The initial F-SBS sensing method required the removal of the standard coating layer of the optical
fiber, in order to enable acoustic interaction with the outside medium. However, the use of bare
fibers is often impractical. In 2018, Chow and Thévenaz demonstrated F-SBS sensing of
surrounding liquids using a fiber coated with a thin polyimide layer [39]. The polyimide-coating
layer provides the necessary mechanical protection, and it was also thin enough to allow acoustic
wave propagation to the outside liquid. This sensing method was later extended for the elastic
characterization of the coating layer itself [42]. F-SBS fiber sensing has been extended to point-
measurements over cm-long discrete sections [52] and to spatially distributed analysis [41,53-55].
In most previous demonstrations, only the radial acoustic modes R, participated in the sensing

process.

F-SBS sensors in SMFs were extended through the use of torsional-radial modes of two-fold
azimuthal symmetry, known as TR,,, modes, by Hayashi and co-workers in 2017 [37]. These
modes can be classified in two types: modes that are predominantly dilatational and others with
shear-like characteristics [45]. The distinction between the two types was first considered by the
group of Andrés in 2022 [45]. In 2023, Bernstein, Zehavi and co-workers from our group
demonstrated different sensing behavior between the two types of TR,,, modes in a bare SMF
[56]: When the fiber was immersed in liquid, the linewidths of dilatational TR,,, modes were
broadend much like the radial ones, whereas the shear modes’ linewidths remained narrow. This
observation has been explained by the properities of liquid media: Unlike dilatational movement,
liquids do not support shear wave motion. Therefore, a shear wave reaching the interface
between the fiber cladding and the liquid cannot propagate outward and becomes reflected back,
leading to its slower decay. The monitoring of multiple mode categories enhances the capabilities

of forward SBS fiber sensors and provides more complete assessment of the outside media [56].
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Figure 3 — Measured forward SBS spectra of the TR,,,, modes in a bare fiber immersed in water (solid blue) and kept in
air (dashed black). The linewidths of the dilatational modes (noted by L) are broadened when immersed in water,
whereas the shear modes (labeled S) remain narrow [56].

1.4. Few-mode fibers and their application in space division

multiplexing

As mentioned in previous sections, optical fibers serve as the main platform for high-rate
communication channels. As the data rates kept rising, transmission over a single optical carrier
became insufficient, since it was limited to hundreds of Gbit/s by interface electronics. Several
technological solutions have been developed to transmit multiple communication channels over
a single optical fiber. The primary technique is wavelength division multiplexing (WDM), which
refers to the use of several carrier waves in parallel, each with its own distinct wavelength [57-
59]. However, even WDM is limited to no more than 100 channels. The further increase in capacity
must rely on space division multiplexing (SDM), in which the optical channels are spatially
separated [60,61]. Rather than install additional, separate fibers, SDM can be implemented using
multiple single-mode cores within the same cladding [60]. The cores are sufficiently separated

from each other, to maintain acceptable levels of optical crosstalk.

SDM channels can also be transmitted over multiple optical modes in a single core. With proper
design of the core radius and refractive index of the fiber, the number of guided optical mode
groups can be controlled. These groups refer to as the linearly polarized (LP) mode groups LP;,,
where the integer | = 0 refers to the azimuthal order and the integer n = 1 is the radial order
[62]. Few-mode fibers (FMFs) support the propagation of the spatially orthogonal LP groups, often
up to 20 groups in total. Independent data streams can be multiplexed and transmitted over
different mode groups and de-multiplexed at the receiver end [61]. However, crosstalk in such

mode-division multiplexing is more substantial than among separate cores. Large scale digital
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signal processing is often necessary to undo the coupling accumulated among mode groups over

long fibers [61].

1.5. Brillouin scattering interactions through multiple optical modes

1.5.1. Demonstration in photonic integrated circuits
The existence of several guided optical modes extends the possibilities for Brillouin scattering
interactions. The optical fields that take part in Brillouin scattering may be guided in different
spatial modes, providing additional degrees of freedom to the process. This type of Brillouin
interactions refers to as inter-modal processes, and they are markedly different from the intra-
modal ones, in which both fields are guided in the same optical mode. In 2017, Eric A. Kittlaus
et.al. demonstrated inter-modal forward SBS over a silicon waveguide for the first time [63]. Two
different optical modes were launched through an integrated mode multiplexer: the fundamental
symmetric transverse electric (TE) mode and the first-excited anti-symmetric TE mode. The two
fields co-propagated through the active device region and excited a guided acoustic mode in the
silicon membrane. The acoustic mode, in turn, coupled between the optical fields through inter-
modal forward SBS. Both optical and acoustic modes were solved numerically. Due to different
dispersion curves of the optical modes, phase matching was obtained for a single sideband only,
resulting by the amplification of that sideband rather than in its phase modulation. This symmetry
breaking provided significant unidirectional energy transfer between the optical fields and led to
non-reciprocal propagation effects [63]. Inter-modal forward SBS interactions in hybrid photonic-

phononic waveguides are markedly stronger than intra-modal ones [63].

In 2018, Nils T. Otterstorm et.al. utilized the inter-modal forward SBS over photonic waveguides
to demonstrate a silicon Brillouin laser [64]. Pump light was launched through the anti-symmetric
optical mode. Feedback for the lasing signal was obtained by a ring cavity, and the single sideband
amplification process reached a lasing threshold in the fundamental symmetric optical mode. The

laser obtained was ultra-narrow with 20kHz linewidth.
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Figure 4 — Top: Schematic illustration of inter-modal forward SBS over a silicon waveguide. Two optical fields are
launched through an integrated mode multiplexer (denoted M1) and are coupled into the fundamental symmetirc
mode (blue) and the first-excited anti-symmetric mode (red). Optical power is exchanged between the fields by inter-
modal F-SBS. The fields are demultiplexed at the end of the waveguide (M2). Middle: Schematic of the three modes
participating in the inter-modal Brillouin process: the two optical modes and the acoustic mode that couples between
them. Bottom: Operation scheme of the inegrated mode multiplexers [63].

1.5.2. Forward scattering in polarization maintaining fibers and thin tapered

fibers
Inter modal forward SBS processes may take place over optical fibers as well. In 2021, Gil Bashan
et. al. carried out a comprehensive study of forward SBS interactions over a standard, panda-type
polarization-maintaining (PM) fiber [65]. The panda fiber includes two strain rods of silica doped
with B,0s glass, which induce permanent birefringence between two linear and orthogonal
principal axes. The birefringence between the fast axis () and the slow axis (X) manifests in two
orthogonal optical modes with a difference of about 10* refractive index units between their
effective indices. Analysis and measurements were demonstrated for both intra-modal and inter-

modal processes over PM fibers.

The intra-modal processes largely follow the SMF case, with phase modulation of optical probe
waves propagating in either the fast or the slow axis [65]. By contrast, the inter-modal process is
associated with much larger acoustic wavenumbers. Much like the photonic waveguide
demonstration, the symmetry between scattering to upper and lower sidebands is removed, thus
providing amplification to a single sideband. Due to the presence of strain rods in PM fibers, the
radial and azimuthal symmetries of acoustic mode profiles are broken, and the transverse profiles
of the acoustic modes are far more complex than those of the TR modes. Nevertheless, numerical

analysis successfully predicted all F-SBS spectra [65].



The inter-modal coupling in PM fibers also gives rise to non-reciprocal propagation effects [65]: a
probe wave at a certain frequency which is counter-propagating with respect to the pump fields
may be scattered to a sideband at the orthogonal principal axis. Conversely, a probe wave with
the same frequency that is co-propagating with the pumps is unaffected. Non-reciprocity can be
induced in several probe wavelength windows using the same pumps, through a multitude of
guided acoustic modes. The non-reciprocity effects in PM fibers may provide the building blocks

for opto-mechanical isolators and circulators [65].
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Figure 5 — Calculated normalized transverse X (left) and y (right) components of material displacement in one guided
acoustic mode in a PM fiber, with a cut-off frequency of 175MHz. Black circles denote the boundaries of the cladding,
strain rods, and core [65].
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Figure 6 — Non-reciprocal cross-polarization coupling of probe waves due to inter-modal forward SBS. The acoustic
wave induced by the pump fields (lower right green arrow) may scatter a counter-propagating probe wave of a
specific frequency from one principal axis to the other (upper left green arrow). Cross-polarization coupling of the
same probe frequency is prohibited in the forward direction (upper right green arrow) due to wavenumber mismatch,
noted as Ak [65].

In 2022, Bashan proposed and demonstrated a first forward SBS fiber laser, utilizing the single-
sideband amplification of the inter-modal process in PM fibers [66]. Feedback for the lasing signal
was obtained by fiber Bragg gratings at both ends of the fiber, and the single-sideband
amplification reached a lasing threshold. Due to the PM fiber birefringence, feedback was
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provided to the lasing signal only, while the pump passed through the gratings with low residual
reflections. The laser linewidth reached few kHz, limited by thermal drifting of the longitudinal
cavity modes. The observed output power of the laser was 250 YW, restricted by the onset of

intra-modal backward SBS lasing within the cavity [66].

The F-SBS fiber laser is sensitive to media outside the cladding boundary, even though such media
does not affect the optical cavity. When the PM fiber was partially immersed in water, the opto-
mechanical gain of the immersed section dropped by an order of magnitude due to larger acoustic
dissipation, and a higher pump power was required to achieve the lasing threshold. Lasing was
not achieved when the fiber was fully immersed in water. Such sensitivity is unique to the forward
SBS mechanism. The F-SBS fiber laser may be utilized as an ultra-high coherence source and in

precision sensing of media outside the cladding [66].
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Figure 7 — Measured optical power of the F-SBS fiber laser signal as a function of the pump power. The bare fiber
cavity was kept in air (red), immersed in water for 40% of its length (blue), or fully immersed in water (black). Partial
immersion elevated the lasing threshold since the opto-mechanical coefficient in the immersed section is reduced by

an order of magnitude. Lasing could not be reached when the fiber was wet for its entire length [66].

Inter-modal forward SBS was also demonstrated over thin fiber tapers by Xu et al. in 2022 [67]. A
uniform-cladding fiber was tapered down to a waist diameter of 1.6 um. The optical modes were
guided by the contrast between the fiber silica and the air, and the waist diameter was selected
to support the LPy;,LP;; groups only. Large overlap was achieved between the optical and
acoustic modes, with both spanning the entire cross-section of the fiber taper. Accordingly, the
Brillouin gain coefficients reached were unusually high, 1-2 orders of magnitude beyond those of
standard fibers [67].
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The acoustic modes supported by the narrow fiber tapers combine between bulk and surface
terms, and they are generally more complex than the TR modes of standard fibers. TR-like modes
in tapered fibers only appear at high hypersonic frequencies, beyond 1.5 GHz, and they were not
stimulated in the experiment. The results provided a first example of forward Brillouin scattering
among distinct spatial optical modes in uniform-cladding fibers. However, the drastic tapering

restricts the fiber lengths that may be used.
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Figure 8 — Schematic illustration of an inter-modal forward SBS interaction in a narrow fiber taper [67].

1.5.3. Backward scattering in few-mode fibers
Inter-modal Brillouin scattering interactions may also take place in standard few-mode fibers,
supporting the propagation of several distinct spatial optical modes. In 2013, Song et al.
characterized and measured backward SBS interactions between the first four mode groups in a
standard few-mode fiber: LPy4, LP;;, LP;; and LP,, [68]. The FMF used was a uniform cladding
step-index fiber at 1550 nm wavelength. A mode-division multiplexer composed of concatenated
mode-selective couplers was applied for selective launching of each LP group. Both intra-modal
and inter-modal processes were observed, and the Brillouin gain spectra were characterized
experimentally. The spontaneous backward SBS threshold was also evaluated for each of the

optical modes [68].

1.0 me 10

0.8

LP,

0.6

04

Normalized amplitude
Normalized amplitude

0.2

0.0 0.0+ = e
101 102 103 104 105 106 101 102 103 104 105 106

Av[GHz) 1v[GHz)

(@) (b)

e

Normalized amplitude
Normalized amplitude

e = 0.0 s -
101 102 103 104 105 106 101 102 103 104 105 106

Av[GHz) Av[GHZ]

(©) (d)

Figure 9 — Measured (black) and calculated (green) backward SBS gain spectra of intra-modal interactions in the first
four LP mode groups of a few-mode fiber. Each spectrum consists of contribution of four acoustic core modes [68].
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In 2021, Kim et al. proposed and demonstrated distributed Brillouin sensing in standard few-mode
fibers [69]. The B-SBS spectra were utilized for direct measurements of polarization and modal
birefringence in the fiber. Moreover, environmental variables like strain, temperature and
pressure affect modal dispersion and might be extracted from the backward SBS spectra using

distributed analysis protocols [69].

Thus far, Brillouin scattering in standard few-mode fibers has been demonstrated only in the

backward direction. Forward SBS in standard FMFs has yet to be examined.
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2. Objectives

In this thesis, | report the analysis, calculations, and experimental demonstration of forward SBS
in an off-the-shelf, step-index FMF with standard, uniform cladding. The FMF supports three
guided optical core modes: LPy4, LPy, and the LP;4 group. Intra-modal and inter-modal processes
were observed between the LP groups and the guided acoustic cladding modes TR,,,,. The main

novelty of the research is the following:

e Analytical formulation of the forward SBS process for arbitrary guided optical modes and
guided acoustic TR modes. Both intra-modal and inter-modal processes were considered.

e Observation of higher acoustic frequencies up to 1.8 GHz in the intra-modal process
through the LP,, mode.

e Stimulation of additional categories of TR acoustic modes: TRy, and TRy,,. The TRy,
class was observed in the inter-modal process between the LP;; mode and the LP;;
group, and the TR,,,, category was observed in the intra-modal process of the LP; 1 group.

e Excitation of the Ry, and TR,,, acoustic modes above their cut-off frequencies through

inter-modal process between the LPy; and LP;, modes.

The results represent the first analysis of F-SBS in an FMF, and they could not be obtained in
standard SMFs. The study extends the formulation and scope of fiber opto-mechanics beyond the

single-mode regime, and it may find applications in fiber lasers and sensing.
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3. Theoretical analysis

3.1. Guided optical core modes in standard optical fibers

3.1.1. Guided optical core modes in step-index fibers
The optical modal solutions in step-index fibers are governed by Maxwell’s equations in dielectric
media. The equations may be brought to the form of the wave equation and solved in cylindrical

coordinates in the core and the cladding of the fiber. For a monochromatic electric field vector
propagating at an optical frequency w, E(r, ¢,z,t) = E(r, ¢, z) exp(—jwt), the wave equation

becomes [1]:
V2E + n2,k3E = 0 1)

Here, r and ¢ are the radial and azimuthal transverse coordinates, respectively, and z is the axial
coordinate aligned with the fiber axis. E (r, ¢, z) holds the spatial dependence of the electric field
vector, and n, , are the refractive indices of the core and the cladding, respectively. kg = w/c is

the vacuum wavenumber of incident light, where c is the speed of light in vacuum.

Let us denote the axial propagation constant of the electro-magnetic wave as 8, and define:

heore = /n2k2 — B2 and h¥le? = \/B2Z — n2k2. Solving the wave equation, the axial components

of the electric and magnetic fields E,, H, in the core of the fiber are given by [1]:
E,(r,¢,2) = AJi(h*"°r) exp(jlp) exp(jBz), T <a (2)

H,(r,¢,2) = BJi(h"°r) exp(jlp) exp(jBz), r<a (3)

Here, A; and By are constants, [ = 0 is an integer which denotes the azimuthal symmetry order

of the optical field, J; is the Bessel function of the first kind, order [, and a is the core radius.

The corresponding fields in the cladding of the fiber are given by [1]:
E,(r,¢,z) = CK;(h“'%Ir) exp(jl¢) exp(jBz), r>a (4)

H,(r,¢,2) = DJy(h%4r) exp(jlep) exp(iBz), T >a (5)

Here, C; and D; are also constants, and K; represents the modified Bessel function of the second

kind, order [.
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The radial and azimuthal components of the electro-magnetic field are derived from the axial

components. Inside the core we obtain [1]:

R [ ©)
(heore)z |P Ty r 9

by = s [ 50 - et 227 ®)

a2

Here gy and p, are the vacuum permittivity and permeability, respectively. The corresponding
expressions for Egs. (6)-(9) in the cladding are identical, with (h°°"¢)? replaced by —(h¢®)? and

n, replaced by n,.

The electro-magnetic wave propagating in the optical fiber must satisfy the boundary conditions
in the core-cladding interface. It is required that all field components E,, Ey, H,, Hg tangential to
the boundary interface r = a are continuous at that boundary. These requirements lead to a set
of four homogenous equations that must be satisfied for the coefficients 4;, B;, C; and D;. The

equations may be arranged in the form of a matrix:

]l (hcorea) 0 _Kl (hclad a) 0
|/ 0 Ju(h*"%a) 0 —K;(h"*a) \ A,
BL-Ji(h ¢ a) How , BL- K, (h"*a) Row B\ _
] (hcore)za - pcore I (hcorea) J (hclad)za - hclad K; (hdada) I C; =0 (10)
§i® o BL-Ji(ha)  gniw BL-Ky(he'*da) | Do
\hcore i (™ a) (heore)2q hclad K (hdada) (helad)2qg

Here, J; and K are the derivatives of the Bessel functions with respect to their arguments.

Non-trivial solutions are obtained only if the determinant of the coefficients matrix equals zero.
Following that, we obtain the eigen-value equation for the electro-magnetic wave in the optical

fiber [1]:
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]l, (hcore a) Kl, (hclad a) ]l, (hcore a) Tl% Kl, (hclad a)
hcore]l (hcore a) hCladKl (hclad a) ) hcore]l (hcore a) n_% hCladKl (hclad a)

. (11)

[? 1 1 ns 1
= ﬁ((hcore)z + (hclad)z) ) (heore)? + n_%(hclad)z

For a given azimuthal order [, the eigen-value equation leads to a discrete set of solutions for the
propagation constant 5. We denote the wavenumber solutions as f3;,,, where n = 1 is the integer
radial order. The solutions are arranged in descending order, where (3;; is the largest solution for
a particular [. Substituting each 3}, to the electro-magnetic field components, we obtain a unique

spatial profile for the optical field, which corresponds to a guided optical mode in the fiber.

The guided optical core modes supported by the fiber are denoted by HE;,, and EHy,,. Inthe HE};,
category, the axial component of the magnetic field H, dominates the electric field E,. The
opposite is true for EHy,. In Both categories the transverse components of the electro-magnetic
field are much larger than the axial ones, hence E, and H, are often disregarded, and the optical
modes are considered as nearly transverse. For [ = 0 the modal solutions are actually purely
transverse, and they are denoted as the transverse-electric modes TE|,,, and transverse-magnetic
modes TM,,. Each optical mode is associated with an effective refractive index, defined as
Nerr = Bin/ko. The effective index governs the phase velocity of the optical mode (vypa5e =

c/ngsr) and satisfies n, < ngpr < ny.

When considering a weakly guided fiber (Jn; — n,| < 1), the eigen-value equation can be
simplified to obtain the spatial transverse profiles of the optical modes and approximated

propagation constants f;,,. In Eq. (11) we approximate n3/n? =~ 1, leading to [62]:

! heoreq K/ hclada 1 2
]l ( ) + l ( ) + ) (12)
hcore]l (hcore a) hclad Kl (hclad a) (hcore)z (hclad)z

Taking the square root of both sides, we obtain:

]l, (hcorea) Kl, (hclada) B l ( 1 1 )

hcore]l (hcorea) hcladKl(hclada) - ia (hcore)z + (hclad)z (13)

The =+ sign corresponds to two different equations for the modal categories HE},, and EH;,
respectively. Using Bessel function identities, the eigen-value equation for the HE category may
be expressed as [62]:
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]l_l(hcorea) Kl_l(hclada)
hcore]l (hcore a) = hclad Kl (hclad a)

(14)

Substituting the approximate solutions 3, of Eq. (14) into Egs. (6)-(7), we find the normalized

transverse profile of the electric filed vector for the HE category:

2 (HE) _ (HE) COS(l¢)} N {— Sin(l¢>)} A]
B0, 9) = 60O [ i)+ castiay | ® (15)
Here 7 and fﬁ are unit vectors in the radial and azimuthal directions, respectively. The curled
brackets correspond to two spatially orthogonal solutions for each mode, and Gl(:E)(r) is the

radial profile of the optical field, defined as:

Ji—1(hi7 )
Core core r S a
hiZ"¢a)’
GH®) ) | Ji(hiy
(r) =E, K (hclad ) (16)
-1 r>a

cladK (hclad )

) is defined so that If |E7(~Iff;) (r,¢) rdrdqb = 1. The units of G( B)(r) and E;I{li) (r,¢) are

Figure 10 — Calculated transverse profiles of electric field vectors in the HE;, optical mode in two spatially orthogonal
orientations. The arrows direction and length at each spatial point correspond to the field vector direction and
magnitude, respectively.
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For the EH modal category, we obtain the following equation driven from Eq. (13):

Jia (B°0) Ky (%) a7
hcore]H_Z (hcorea) - hcladKH_2 (hclad a)

Similar to HE, we obtain the normalized transverse profile of the electric filed vector:

F(EM) (EH) cos(lp)) . sin(l¢p) ) -
B 0) = 6570 (oo + nosion) @] (18)
Here Gl(nEH) (r) is defined as:
(e
G EEH) ! hin ®Jis2(hiy @)’ B
(r) = K (hclad ) (19)
1+1 r>a

hclad Kl+2 (hclad )

2
E(EH) is also defined so that [f |E§Elg)(r, ¢))| rdrd¢ = 1.

B 7 7 N NN
X! N
"

Figure 11 — Calculated transverse profiles of electric field vectors in the E Hy, optical mode in two spatially orthogonal
orientations. The arrows direction and length at each spatial point correspond to the field vector direction and
magnitude, respectively.

For the specific cases of TE and TM modes, we get:

ESDr,¢) = 6P (¢ (20)

TOn

EDr,¢) = G () 1)
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Figure 12 — Calculated transverse profiles of electric field vectors in the TEy; (left) and T My, (right) optical modes. The
arrows direction and length at each spatial point correspond to the field vector direction and magnitude, respectively.

3.1.2. The linearly polarized mode groups
Given an azimuthal order [ > 2, one may notice that for the modal categories HE},;, and

EH;_4, Egs. (14) and (17) become identical and take the following form:

]l (hcore a) B Kl (hclad a)

= 22
hcore]l_l_l (hcore a) hclad Kl+1 (hclad a) ( )

Hence, we find that in the weakly guiding approximation regime, the HE},; , and EH;_, ,, modes

are degenerate: they share the same approximated propagation constants f5;,, and the same

(HE)

Ln() = Gl(fﬁn(r). Linear combinations of these optical modes with

transverse radial profiles G

different spatial orientations yield the following quasi-modes which exhibit linear polarization:

=2(LP) _ (LP) cos(ld))} .
ET,ln (T‘, ¢) - Gln (T') {sin(l¢) € (23)
Here, GI%P) (r) is the common transverse radial profile of the optical modes and € is a unit vector

of an arbitrary state of polarization. These quasi-modes refer to as the linearly polarized (LP)
modes LP;,. The LP modes are not exact modes since there is a slight difference in effective
indices between the HE;,, , and EH,_; , modes. Nevertheless, the LP quasi-modes are often
considered as mode groups. The differences in the refractive indices among modes within the
same LP group are in the order of 107° refractive index units (RIU), 2-3 orders of magnitude smaller
than the corresponding differences between different LP mode groups. Therefore, they are often
launched and de-multiplexed collectively in SDM architectures, providing the building blocks for

higher data transmission.
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For azimuthal order | = 1, the LP;,, group consists of the TEy,,, TM,, and HE,,, optical modes.

For [ = 0, the LP,, group includes the HE;,, mode only, hence LP,, is considered as an exact

mode.

Figure 13 — Calculated normalized radial profiles of the electromagnetic intensity of the first four LP mode groups (see
panels titles). Optical vacuum wavelength: A, = 1550nm; Refractive indices of core and cladding, respectively: n, =
1.463, n, = 1.458; Core and cladding diameters, respectively: 2a = 18.5um, 2b = 125um (V = 4.53).

The number of LP mode groups supported by the optical fiber is governed by the V parameter:

V =kya /nf —n2 (24)

Figure 14 illustrates the effective refractive indices of multiple guided LP mode groups as functions
of the V parameter. For V < 2.405, only the fundamental mode LP,; (or HE;4) is allowed to
propagate in the fiber, and the fiber is referred to as an SMF. As the V parameter is increased,

more and more LP groups are able to propagate in the optical fiber, entering the few-mode

regime.

20



-

N

o

e

(&}
T

N

~

<3

e
T

1.4595

1.459

1.4585

1.458
0

Figure 14 — Calculated effective refractive indices n.ry of multiple guided optical mode groups in a standard fiber as a
function of the V parameter. The core and cladding refractive indices are chosen n, = 1.463 and n, = 1.458,
respectively.

3.2. Guided acoustic cladding modes in optical fibers

3.2.1. Basic definitions
In the following section we define the terms and variables associated with guided acoustic modes

in optical fibers:

— T
o U= (Ux, Uy, UZ) — The material displacement vector [m] in Cartesian coordinates
XY, 2.

e S —The second-order strain tensor [unit-less].
The strain is obtained by the tensor gradient of the displacement:
s=vU (25)
In Cartesian coordinates, the strain elements are given by:

oy

Sij = W (26)

Where i,j € {x,y, z}.

We often use the symmetric form of the strain tensor, with elements given by:
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5y = (%, % 27
v=2\% e (27)

e T —The second-order stress tensor [Nxm~].

For purely elastic materials, the relation between the second-order stress and strain tensors is

given by the fourth-order stiffness tensor ¢ [Nxm2]:
T=c:S (28)

With elements:

Tij = z Cijk1Skt (29)
ol

Here k, [ also scan over {x, y, z}.
e p —The fourth-order photo-elastic tensor [unit-less].

For non-birefringent materials, the second-order dielectric perturbation tensor A& associated

with material strain is governed by:

Ae=-nip:S (30)
With elements:
Ag;j = —ngz PijkiSk (31)
KL

Here ng is the medium refractive index.

3.2.2. The torsional-radial acoustic cladding modes
The material displacements of guided acoustic modes in optical fibers are governed by the elastic

wave equation. For a lossless medium, the homogeneous equation is expressed by [34]:

020

o V3V — (v —v2)V(V-U) =0 (32)
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Here v, s are the velocities of dilatational and shear acoustic waves in silica, respectively. Since
cladding acoustic modes are considered, we disregard the difference in refractive indices between

the core and the cladding and solve the equation for a uniform silica cylinder.

The material displacement U propagates along the fiber axis as a wave, with axial wavenumber K
and temporal frequency Q. Solving Eq. (32), the vector components of the displacement in

cylindrical coordinates are given by [70,71]:

U, = Ak lar) + KBy Ghesr) + 2y s oo b N expikz = jay— 33)
N N

Up = [E sy Gear) + 4281y Gesr) + kesClp )| { o expikz = joey - (34

U = KAy ker) = s By Casr)] oo o) exp UKz = 120 (35)

In Egs. (33)-(35) p = 0 is the integer azimuthal symmetry order of the acoustic wave, k;; and k;
are the transverse components of the wave vector describing dilatational and shear movement,
respectively, and 4, B and C are constant coefficients. Note that the displacement profile exhibits

two spatially orthogonal solutions, represented in curled brackets.

The wave vector components k;;, kts, K and the acoustic frequency ( satisfy the following

dispersion relations [70-72]:

Q2 Q2
ktzl-l'Kz:—Z H kt25+K2=—2 (36)
VL Vs

The boundary conditions of a free infinite cylinder in air require zero stress in all directions at the

outer surface of the cladding r = b:
T (r=b")=0; T,r=b")=0; T =b")=0 (37)

Here b is the radius of the fiber cladding. The boundary equations may be rearranged in terms of

A
M, (3) =0 (38)

a 3x3 matrix [11,70-72]:
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. . p 2cptadp, 2c44p
( —e1z(kfy + K*)Jp (kub) + 2caskiy (kuub) —2jcasK - kesly (kesb) " kulyUkesh) = =7 Jp(ktsb)\
. , , jKp
M, = | 2jK - keiJp (kerb) (k& — K2 (kesb) =5 Jp(kesh) i (39)

2jKp

, 1 P " kes |,
I gy )~ 1] By ) + B ) — 52 )
kb b b b

2 1
\ 7” [ktL/;, (kub) = 7 Jp(kub)

Here ], denotes the second derivative of the Bessel function with respect to its arguments, and
C12,C44 are components of the stiffness tensor c¢. Non-trivial solutions to the boundary equations

are obtained when the determinant of the matrix M, equals zero:
det(M,) =0 (40)

For a given azimuthal symmetry p, every choice of axial wavenumber K leads to a discrete set of
acoustic frequencies Q that satisfy Eq. (40). Each Q is associated with a unique spatial profile of
the material displacement, corresponding to several acoustic modes guided by the fiber cladding.
These modes are referred to as the torsional-radial (TR) acoustic cladding modes TRy, ,, where
m = 1 denotes the integer radial order. Scanning the K axis and solving Eq. (40) for £, we obtain
the dispersion curves of the TR,,,, modes. Each curve is characterized by a cut-off frequency,
obtained by substituting K = 0 into the boundary conditions equations. These cut-off frequencies

are denoted as (1,,,. Below cut-off, the acoustic modes may no longer propagate in the axial

direction.

’A l‘)” "

, -’—1///

i
Josp——""R,,

gt

Joa P R,
>

(/f

Figure 15 — Schematic illustation of dispersion curves of the radial guided acoustic modes R,,. The axial wavenumber
is denoted q,, and the modal cut-off frequencies are denoted f; , [36].

When considering acoustic modes excited through forward SBS, the electro-strictive driving force
in both intra-modal and inter modal processes exhibits axial wavenumbers which are much
smaller than the transverse wavenumbers of the acoustic modes, K «< ky;, k;s. Therefore, we
assume that the acoustic modes are excited very close to their cut-offs (Q - me,K - O). At
that limit, the phase velocities of the guided acoustic modes approach infinity, and the material

displacement vectors become predominantly transverse (UZ < U, U¢).
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Following that, we substitute K = 0, B = 0 in Egs. (38)-(40). The boundary equations are then

reduced to the determinant of a 2x2 matrix [11,71,72]:

p?—1 —lqﬂ 2(p* - D[6,(¥) — p] — ¥?

2 =0 (41)

0p(@) —p—1 2p?—2[0,(¥) - p] — W2
— meb_ _ meb_ _§Jp-1(8) (42)

¥= VL P = Vs 'Gp(f)_ ]p(f)

Solving Eq. (41), we obtain the modal cut-off frequencies (. Substituting into Egs. (33)-(34), we

obtain the normalized transverse displacement profiles of the TR acoustic modes:

o) = Do [Aom 221 (S227) + Zonte (22 | ()

p Qpm Qpm , (me )] {—Sin(P@}A
+ Dpm [rApm]p( v, r) * Com Vg Jp Vg ") cos(pe) ¢
Here, Apy, and Cpp, are the two elements of the eigen-vectors corresponding to the cut-off

frequency eigen-values (,,, of Eq. (41). Dp, is a normalization factor, defined so

that fozn f0b|17pm(r, ¢>)|2rdr d¢ = 1. Therefore, iy, has units of m™.
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Figure 16 — Normalized calculated transverse profiles of material displacement of several guided acoustic cladding
modes. Top: radial displacement in mode R, . Center: radial (left) and azimuthal (right) displacement in mode TR;.
Bottom: radial (left) and azimuthal (right) displacement in mode TR .

3.2.3. Classification of the torsional-radial modes
The radial and azimuthal components of the normalized displacement in Eq. (43) consist of two
terms each. The first term in each pair describes dilatational wave motion, governed by velocity
v, whereas the second term in each pair represents shear wave motion with velocity v [56].
Every TRy, mode with p = 1 includes nonzero contributions of both types of waves. The relative
magnitudes of the two contributions are proportional to Ay, Cypm- TR modes may be broadly

classified as either predominantly dilatational, (where Ay, > Cpy,), or shear-like, in cases where
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Cpm > Apm [44,45,56]. For p = 0, the radial modes R, are purely dilatational, whereas the

torsional modes T, are strictly shear waves.

The spacing between the cut-off frequencies (1, of TR modes that are primarily dilatational is
approximately v;/(2b), and the corresponding spacing for shear-like modes equals
approximately vs/(2b) [44,45]. While the classification of modes as either dilatational or shear-
like is not complete, and the above frequency spacings are not precise, they are nevertheless

useful in the study of forward Brillouin scattering processes.

3.2.4. Dispersion relations of the torsional-radial modes
As discussed in previous section, each guided acoustic mode is characterized by a dispersion curve
between the acoustic frequency () and axial wavenumber K. The curve is governed by either one
of the dispersion relations of Eq. (36), depending on whether the acoustic mode is predominantly

dilatational or shear-like. In cut-off, K = 0, therefore we obtain:
ky=—— 1 kis=—— (44)

Substituting back in Eq. (36), we obtain the following dispersion relations close to cut-off:

2
Vis
205,

Q= Qpp =~ K2 (45)

In intra-modal F-SBS interactions, the axial wavenumber K is very small, typically in the order of
1-10 radxm™. Therefore, in these processes the acoustic modes are excited practically at their cut-
offs O = Q,,,. By contrast, in inter-modal interactions K may reach the order of 10* radxm™.
These values may be within a single order of magnitude of the transverse wavenumbers k¢, k.
Following Eq. (45), the acoustic modes might be stimulated at frequencies detuned from the cut-

offs by several MHz.

27



3.3. Thedriving force: electro-striction

3.3.1. Derivation of the driving force
Consider two co-propagating optical fields of frequencies w;, = wp 19 in spatial optical

modes 1 and 2, respectively:

E1,2 (x,y,z,t) =A;, (Z)ET,1,2(X; y) eXP(jﬁLzZ —jw1,2t) +c.c (46)

Here w), is a central optical frequency, () denotes a frequency detuning on the acoustic scale, and

A1 ,(z) represent scalar complex magnitudes in Volts. §;, and ET,l,Z are the propagation
constants and normalized transverse profiles of the two optical waves, according to their specific

modes. We denote these optical fields as two pump waves.

The two fields induce mechanical stress in the optical fiber, pulling the medium particle towards
higher intensity regions. The second-order electro-strictive stress tensor o, , [Nxm™] associated
with the two pumps includes components which propagate along the fiber as a wave, with
temporal frequency ) and axial wavenumber K = ; — 8,. The tensor components are given by

[11]:

1
Oijp2(%,y,7,t) = —5 %Mo lz DijiiA1(2)A3(2) Ex1 (x, ) Epp (x,y) | exp(jKz — jQt)
(47)

+c.c

Here, i, j, k, L scan over the Cartesian coordinates x, y, z, E;1 and E}, are the vector components
of the electric fields’ transverse profiles, and n, is the refractive index of silica. As will be discussed
in more detail later, the electro-strictive forces per unit volume associated with the pump waves
are given be spatial derivatives of g ,. in settings of F-SBS K is comparatively small, and axial
derivatives of Eq. (47) are much smaller than transverse ones. In addition, the optical fields are
restricted to the transverse plane as well. We therefore restrict i, j, k,l € {x,y} only from now

on.

We rearrange Eq. (47) and obtain:

1
Oija2(x,y,2,t) = _Focng [Z Dijit Ex1 (6, V)E2 (x, y) | P(Q, z) exp(jKz — jQt) + c.c  (48)
k,l
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Here, P(Q,z) = 2nyceyA,(2)A5(2) [Watts] refers to the beating power between the pump

waves.
We define the tensor I , [m?] of cross-products between the normalized field components:
lij12 = EinEjp (49)

Substituting into Eq. (48) yields:

P(Q,z)exp(jKz — jQt) + c.c (50)

1
4
Oii1g = — n E il
ij,1,2 47’106 0 klpl]kl kl,1,2

We define the normalized transverse stress tensor @, , [m™]:

G, = —ngp: I, (51)
With elements:
Gij12 = —Mg Z Pijrilki,2 (52)
k.l
We may write:
01,(x,y,2,t) = . G,,(x,y)P(Q,z)exp(jKz — jQt) + c.c (53)

Here the normalized stress tensor @, ,(x,y) contains the transverse dependence of &, ,. The
electro-strictive force per unit volume [Nxm] driven by the two optical fields is given by the

tensor divergence of the stress [73]:

ﬁ1,2 =-V-0,, (54)
With elements:
0
Fii2= —Za_jaij,l,z (55)

Similarly, we define the normalized transverse profile of the electro-strictive force [m?3]:
f1,2 ==V 51,2 (56)
With elements:
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»
fusa ==, 5 %un2 (57)
J

We therefore may write:

1 5
f12(x,y)P(Q,z) exp(jKz — jQt) + c.c (58)
4nge” ™

Fl,Z(x'y'Z't) =

We may express the components of the normalized transverse stress tensor @, , in Eq. (52)

explicitly in terms of 3x1 vectors and a 3x3 matrix. In cylindrical coordinates, we obtain [11]:

O~'rr,1,2 (T: ¢) P11 P12 0 Erl (T’, (p)ErZ (T, (p)
Gpp12(r @) | = —ng (P12 ZER. ) Ep1(r, §)Ep2(r, @) (59)
Grp1,2(r, ®) 0 0 Pas/ \Ep1(r,§)Ep,(r, @) + Ep1(r, §)Eyo (1, @)

The formalism invokes the symmetries of the photoelastic tensor in isotropic media such as silica.

_ _ 1 .
Here P11 = P1111,P12 = P12z, Paa =5 (P11 — P12), and Ey g5, Eg g, refer to the radial and

azimuthal components of the normalized transverse profiles of the electric fields, respectively.
The normalized electro-strictive driving force is expressed in cylindrical coordinates as [73]:

2 a0~-rr,1,2 1 66-1”(1).1.2 1. ~ P
fl,Z(TJ¢) = - [ or + - o + ;(Urm,z - J¢¢,1,2) r

(60)

3 a5r¢,1,2+155¢¢,1,2
ar r d¢

+ §5r¢,1,2] ¢

Examination of Egs. (59)-(60) reveals that for a given choice of optical modes with azimuthal
orders 1, , respectively, the driving force includes terms with azimuthal symmetries [; & [, only.
For example, when both optical waves are guided in the fundamental mode HEy; (I, , = 1), the
electro-strictive force per unit volume consists of a radially symmetric term and a term of two-
fold azimuthal symmetry. By contrast, if the optical fields 1 and 2 propagate in arbitrary high-

order modes, the electro-strictive force may take up any integer azimuthal order.

3.3.2. Wavenumbers of driving forces
The axial wavenumber K of the electro-strictive force per unit volume varies considerably
between intra-modal and inter-modal processes. In the intra-modal case, where both pumps are

guided in the same optical mode, we obtain:
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1 1
Negr1(wWp +30)  Tegr1(@Wp —30)  Megr1Q 61
Kintra = - = (61)
c c c
Here ngf 4 is the effective index of the common optical mode. The wavenumber in Eq. (61) is very
small, typically in the order of 1-10 radxm™, and the corresponding driving force may excite
acoustic modes very close to their cut-offs as discussed before in section 3.2.4. By contrast, in
inter-modal interactions, where the two pumps propagate in different spatial modes, we find

that:

1 1
neffll(wp + EQ‘) _ Mefiz ((Up - §Q) _ (neff,l - neff,z)wp + Neff1 + Nefr2 9 (62)
c c c 2 c

Kinter -

Here negs, is the effective index of optical mode 2. Since w,, > (1, we may approximate:

(neff,l - neff,z)wp
Kinter = c (63)

The difference in effective indices between mode groups may reach the second decimal point.
Hence, the axial wavenumber of the electro-strictive force driven by two distinct mode groups
can be in the order of 10* radxm™. This wavenumber is way larger than the intra-modal one. The
large differences in wavenumbers between intra-modal vs. inter-modal scattering manifest in the

forward Brillouin spectra of the two settings, as discussed in later sections.

3.3.3. Excitation of acoustic modes with arbitrary azimuthal orders
The material displacement driven by the electro-strictive force in the fiber is governed by the non-
homogeneous elastic wave equation [34]:
020 au _ N

po| gz TV 5~ vEVAU — (v —vdV(V-U)|=Fp, (64)
Here p, is the material density of silica and I'({)) represents acoustic dissipation. The electro-
strictive force may stimulate guided acoustic TR modes very close to their cut-offs, propagating
along the fiber hand-in-hand with the driving force at wavenumber K and acoustic frequency (.
Each mode is associated with a modal magnitude by, (£, z) which depends on the acoustic
frequency and axial position. The total displacement vector may be expressed in the basis of all

the TR modes:
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U(r,¢,z,t) = Z bym (Q, 2) U, (r, @) | exp(jKz — jQt) + c.c (65)

pm

Substituting Egs. (58), (65) into Eq. (64) yields:

Z by (Q,2) [-Q% — jAT(Q) + Q2 |upm (r, ) = ym

pm

1 5
Pe f12(r, $)P(Q, 2) (66)

We multiply both sides by the transverse displacement profile z_ipm (1, ¢) and integrate both sides

of Eq. (66) over the transverse plane. We obtain:

2w b

s " Of Of (1, @) - foo(r, pIrdrdp  (67)

bym(Q,z) =
pm(,2) 4ngcpo Vo —

We assume that ['(Q) < Q. Therefore, we omit the frequency dependence of I" within the
frequency range of each acoustic mode and replace it by a modal constant value T, which
represents the decay rate and spectral linewidth of that acoustic mode. We approximate the
frequency response of Eq. (67) by a Lorentzian line shape:

1 j 1

Qpm = 92 = JOT(@) ™ TpmQpm g _ 0~ Dym (68)

om
We now define the spatial overlap integral between the transverse profiles of the electro-strictive

force driven by optical modes 1,2 and the acoustic mode displacement:

2 b

Q" . = J J Ty (1, ) - 7, (r, D)rdrdep (69)

Substituting Eqgs. (68), (69) back into Eq. (67) yields:

(ES) 1
1,2,pm
bpm(Q,2) = j P(Q,z)
pm 410CPoLpmQpm | _ 2j Q= Qpm (70)
pm

The spatial overlap integral Q1 2pm depends on the choices of the optical modes 1 and 2 and of

the acoustic mode TR, The overlap vanishes when the azimuthal orders of iipm and ]?1,2 do not
match. Consequently, the azimuthal order p of the stimulated acoustic mode must equal [; £ [,.
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Referring again to the specific case of two optical fields in the fundamental mode in which [, , =
1, we find that only acoustic modes with p = 0,2 may be excited through forward Brillouin
interactions: Ry, Tom, or TRy,,. Further, the azimuthally independent component of ]?1,1 in
single-mode fibers is entirely in the 7 direction. Therefore the R, acoustic modes are observed

in forward Brillouin scattering in single-mode fibers, but the Ty, are not.

By contrast, forward Brillouin interactions in few-mode fibers, with one or both optical fields
propagating in optical modes with [ # 1, may result in the stimulation of additional classes of
guided acoustic modes with different azimuthal symmetries. For example, the LP;; group
contains modes with [ = 0 and [ = 2. Electro-strictive stimulation through modes within that
group may generate acoustic waves with azimuthal order p = 0, 2,4. Inter-modal interactions
between optical fields in the LP; ; mode and the LP; ; group might stimulate acoustic modes with

p=1lorp=3.

3.4. Scattering of light by acoustic waves: photoelasticity
3.4.1. Derivation of the dielectric perturbation tensor

Consider a stimulated guided acoustic mode TRy, with material displacement l_fpm:

ﬁpm(r, $,2,t) = by (Q, 2)Upy (1, @) exp(jKz — jAt) + c.c (71)
The displacement is associated with a symmetric strain tensor, given by:

Spm (1, 9,2,t) = by (Q, 2)spm (1, @) exp(jKz — jAt) + c.c (72)
Here, spm (1, @) is the normalized symmetric strain tensor, in units of m. Following Eq. (25), the
elements of the normalized strain tensor in cylindrical coordinates are given by:

aur,pm(r' ¢) (73)

Srr,pm @ ¢) = or

ur,pm (T', (,b) + 1 auq,’),pm (T, ¢)

Spppm (1)) = —— ¥ (74)
_ 1/1 aur,pm (T, (,b) auqf),pm (T', (.b) Ugp,pm (T, (.b)
Srgpm (T, @) =3 (? b ar > (75)
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In Eqgs. (73)-(75), uy, pm and ug ,,,m denote the radial and azimuthal components of the normalized
displacement vector, respectively (see Eq. (43)). Strain in the fiber medium gives rise to photo-

elastic perturbations to the dielectric tensor [11]:
Aey (1, $,2,t) = bym (Q, 2) i, (1, @) exp(jKz — jAL) + c.c (76)

Here pyyy, (1, @) is the normalized dielectric perturbation tensor, in units of m™. The tensor A&y,
propagates along the fiber as a wave of frequency (2 and wavenumber K. The perturbations scale
with the modal displacement magnitude b,,,(£,z), and hence also with the beating power

between the two stimulating optical fields, P((Q, z).

Following Eq. (31), the elements of the normalized dielectric tensor u,,,, in Cartesian coordinates

are given by:
Hijpm = —ng Z PijriSki,pm (77)
kL

We may express the components of w,,,,, (7, ¢) explicitly in terms of 3x1 vectors and a 3x3 matrix.

In cylindrical coordinates, we obtain [11]:

Hrr,pm (7, ¢) D11 P12 0 Srr,pm @ ¢)
Hoppm (T, P) | = —ng <p12 P11 0 ) Sppom (T ®) (78)
Hrgp,pm (r, (.b) 0 0 Pas 25r¢,pm (1, ¢)

3.4.2. Photoelastic coupling between optical and acoustic waves
The dielectric perturbations induced by the acoustic wave may couple light between a pair of

optical fields, E3,4, propagating in optical modes 3 and 4:

E3,4(T' ¢,z,t) = A3,4(Z)§T,3,4(7"' ®) exp(j[)’3,4z —jw3,4t) +c.c (79)

Here A 4 are the complex magnitudes of the two fields [V], B3 4 are their propagation constants

in their respective modes, ET,3,4— are the corresponding normalized transverse profiles of the two
modes, and w3 4 are their respective optical frequencies. Effective coupling requires matching in
both frequency and wavenumber between the pair of optical fields and the photo-elastic

perturbations:
w3 — wy = £, B3 —Ba=xK (80)
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In intra-modal processes, where all four waves involved propagate in the same mode 1, fulfilment
of the frequency requirement guarantees the wavenumbers condition is met as well, since all

optical waves satisfy:

By =M =14 (81)

[

Whenever w; — w, = +Q = +(w; — w,), we automatically obtain also B3 — By = +(B; —
B,) = K. This property holds as long as chromatic dispersion remains negligible. It suggests that
intra-modal forward Brillouin scattering would couple a third, input optical probe wave with both
its sidebands, spectrally detuned by +Q, regardless of its optical frequency. The coupling may
take the form of phase modulation, polarization rotation, or both, depending on the choice of
acoustic mode and the state of polarization of the optical probe wave (see sections 3.5.2, 3.5.3)

[11].

The requirement for wavenumber matching is markedly different in the case of inter-modal

scattering, in which the acoustic wave is stimulated by optical fields in distinct spatial modes 1

. . 1 : .
and 2. Let us denote the optical frequencies w3, as ws iEQ' where wg is their average.

Wavenumber matching in photoelastic coupling between 53,4 is reached when:

(neff'3 —CneffA,)ws — 4 (neff,l _Cneff,Z)wp = +K (82)

Here ne¢r3 and negr4 denote the effective indices in modes 3 and 4, respectively. Wavenumber
matching for photoelastic scattering in the inter-modal process is guaranteed between the two
pump waves El,z which stimulate the acoustic wave in the first place, as ws = wp, Nefr3 = Nefr1
and nggrq = Negro. In that case the forward Brillouin interaction is in the stimulated regime, with
the same pair of optical waves used to both generate the acoustic wave and to monitor the
induced scattering. Forward stimulated Brillouin scattering results in the amplification of the
lower-frequency pump field, at the expense of the higher-frequency one (see section 3.5.4) [11].

If the pair of modes 3 and 4 differs from the pair of modes 1 and 2, the wavenumbers for

photoelastic coupling between 53,4 might only be matched for specific frequencies wj, if at all.

The photoelastic coupling between a pair of optical waves }:'7)3,4 and a given acoustic mode TR,
is governed by the overlap integral between the transverse profiles of the dielectric perturbations
and the two optical modes involved:
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2w b

PE
Q§,4,,3m = f f [t4rr pmEr3Era + Hpg pmEp3Epa + trg pm(ErsEpa + Eg3Ery)|rdrdg  (83)
0
Here E,; and E,, denote the radial components of E')T,3,4, respectively, and Eg3, Eg4 are the
corresponding azimuthal components. Similar to the electro-strictive overlap integral, the
photoelastic spatial overlap vanishes unless the azimuthal order p of the acoustic mode equals

I3 £ 14, where I3, are the azimuthal orders of optical modes 3 and 4, respectively.

Due to phase matching considerations discussed above, we consider from now on that 53,4 = E1,z
respectively. The integrand in Eq. (83) may be rearranged in the following form, where the optical

fields are presented as a 2x1 vectors and the dielectric perturbation tensor u,,,, is given by a 2x2

matrix:
2m b
(PE) Hrrpm  Hreppm\ [ Erq
Q1 2m = f j [(Erz, Eg2) (oo ) (E¢ )]rdrd¢) (84)
00

3.4.3. Equivalence of electro-striction and photoelasticity spatial overlap
integrals

In the following section we show that for given two optical modes 1 and 2, the overlap integrals

09— 0B 1he

associated with electro-striction and photo-elasticity are identical: Q;; ., = Q1 -

derivation is detailed in Cartesian coordinates for convenience, but it holds for any choice of

coordinates system.

Let us rearrange the overlap integrals in Cartesian coordinates in terms of the tensor elements of

the optical and acoustic waves involved. The electro-striction overlap integral in Eq. (69) becomes:

Qtopm = ﬂZﬁlz Uipm d (85)

And the spatial overlap integral associated with photo-elasticity in Eq. (83) is given by:

(PE)
Qi 2pm ﬂZuupm lij1,2ds (86)

Here i, j scan over the transverse Cartesian coordinates x, y.
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For electro-striction, we substitute Egs. (52), (57) into Eq. (85) and get:

Zfi,l,zui,pm = Zza thlzulpm nozz (Z pl}kllk112>u1pm
i

(87)
4 0
=M Z Pijki ui,pmylkm,z
07kl J
Leading to:
ES
iZz)Jm Ny ff Z pl]klulpma Iz |ds (88)

i,j,k,l

In Eq. (87) we assume that the photo-elastic tensor p is constant across the silica fiber cladding.
In addition, k, [ also scan over x, y. Expressing the summation over j = x, y explicitly, and moving

the summation outside the integral, we obtain:
d 0
ES
Qiz,;m = ngz ff (pixklui,pmalkl,l,z + DiyiaUipm 7 3y Iii1 2) ds (89)
ik,

Next, for photo-elasticity we substitute Egs. (26), (77) into Eq. (86) and obtain:

ZMU pm 1112 - nozzpuklsklpm ij1,2 = nO Z pl]klll112alukpm (90)

i,j kl i,jkl
With a change of indices i’ = k,j' = [, k' = i,l' = j, we obtain:
. 0
Kijpmliji2 = —No Prtit i Tkt 1,2 Wui',pm (91)
i,j kUG

(The prime superscripts are omitted hereunder). The tensor p is symmetric, hence py;;j = Pjjii-

The photoelastic overlap integral is therefore brought to the following form:

0

PE

iz.zzm = _”3 Z ﬂ Pijkilki1,2 a—jui,pmds (92)
iLjkl

Expressing once again the summation with respect to index j in a direct form, we obtain:
d d
PE
Q:E,Z,zzm =-ng Z j f (pixkllkl,l,z 35 Lipm + Diykilki1,2 @ui,pm) ds (93)
ikl
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Integration in part yields:

(PE) _ 4 0 4
Qi2pm = Mo pixklui,pmalkl,l,z + DiyraUipm alkm,z ds
ikl
L (94)

4
—ng g [.‘f PixiaUipmlk,1,2dy + 3€ PiyitUipm k1,2 dx]
n L L
ikl

(ES)

The first two terms in Eq. (94) equal Ql,Z,pm

(see Eq. (89)). The last two terms are integrals carried
out over the outer circumference of the cladding cross-section. At the cladding edge, I}; 1, = 0.

These two terms therefore vanish, and we obtain:

Qtpm = Qi (95)

1,2,pm 1,2,pm
In the following sections we denote both overlaps as:

ES PE
Qu2pm = Qi,z,;);m = Qiz,;m (96)

3.5. Forward Brillouin scattering in few-mode fibers

3.5.1. The opto-mechanical nonlinear coefficient
We now address the forward SBS effect in few-mode fibers, which combines both electro-striction
and photo-elasticity as discussed above. We define the opto-mechanical coefficient y; 5 pm (1)
[Wixm™] which determines the induced modulation of the probe wave in the intra-modal
process, and governs the power exchange between the pump waves in the inter-modal process.
The opto-mechanical coefficient of the forward SBS process between a pair of optical modes 1

and 2 and an acoustic mode TR, is given by:

ko Q12,2,pm 1

(R)
Q- Qpp (97)
T Tom

Y12pm (-Q') =] R
8n(2,cp0 Fpmﬂgm)l

— 2]
Here Qg,{,)l is the resonance frequency of maximum Brillouin interaction. It is achieved where
phase matching conditions are met, governed by the dispersion relations of Eq. (45):

2.2
kg ULs

®
a® ~q, + 25
O L TV

(Nefr1 — Nefr2)* (98)
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Eg. (98) refers to inter-modal scattering, in which the detuning from cut-off is inversely
proportional to the acoustic frequency. The resonance frequency Qg,}f,)l practically reduces to the

cut-off frequency (., for intra-modal forward Brillouin scattering processes.

The modal linewidth I}, depends on the mechanical impedance of media outside the cladding,
and its monitoring provides the basis for forward Brillouin fiber sensing [36]. For bare fibers in air,
the linewidths are determined by acoustic dissipation in silica and by inhomogeneities in the
cladding radius, and scale quadratically with acoustic frequency [74]. Typical values range

between tens to hundreds of kHz.

The opto-mechanical coefficient takes up its maximum value on resonance (1 = Qg}%), where it

is purely imaginary. We define:

(0) _ kOle,Z,pm (99)

1,2,pm — R

8”(2)CP0Fme§m)z

Eqg. (97) takes the form:
1
. (0)
Y Q) =jy
e v g - o® (100)
1—2j —5
pm

Typical 71(,(1),0m values for radial acoustic modes in standard, bare single-mode fibers reach the
order of 10 Wixm™ [11]. These values are an order of magnitude weaker than those of backward
Brillouin scattering in the same fiber, in which the acoustic waves are confined to the core in larger

overlap with the optical mode [6,12,13].

The total opto-mechanical spectrum for optical modes 1 and 2 is given by the summation of all

acoustic TR modes participating in the F-SBS process:

Y1,2,t0tal () = Z Y1,2om (1) (101)
pm

3.5.2. Phase modulation of probe waves
We consider here intra-modal interactions and define the probe field which co-propagates with

the pump waves in a common spatial mode 1 at the same spatial orientation:

39



Es(r,¢,2,t) = A{(2)Er, (1, ¢) exp(jfsz — jwst) + c.c (102)

The dielectric perturbations induced by the acoustic mode TR, give rise to additional, nonlinear

polarization in the fiber medium:
ﬁp’\% (r, ¢, z,t) = goAeyy (1, ¢, 2, OE(r, ¢, z,t) (103)
We substitute Egs. (76), (102) into Eq. (103) and obtain:

ﬁp’\% (1, ¢,2,) = &[bym (Q 2)pym (r, §) exp(jKz — jQt) + c.c]

- (104)
' [As (Z)ET,l (T‘, d)) exp(iﬁsz - j(‘)st) +c. C]
The nonlinear polarization consists of two harmonic terms of frequencies wy £ :
ﬁzlav7$l+ (r,¢,z,t) = fSOAS(Z)bpm(-Qu Z)ﬂpm(r' ¢)ET,1 (r, ¢) explj(Bs + K)z — j(ws + Q)t] (105)
+c.c
B ~(r,,2,8) = £0As(2)bym (O D pm () $)Er 1 (7, ) explj (Bs — K)z — j (w5 — Q)] (106)
+c.c
These terms give rise to the generation of optical field sidebands Ei at frequencies wg + Q:
Ey(r ¢,2,t) = Ay (D)Er(r, §) expljfsz — j(ws  Q)t] + c.c (107)

Since all optical fields are guided in the same spatial mode, the field sidebands and the nonlinear

polarization terms are wavenumber matched.

The evolution of the optical sideband field components is governed by the nonlinear wave

equation for monochromatic waves:

L = (o202 o

VE, + pIEs = pm,+ (108)

goc?

We assume that the complex magnitudes A, (z) vary slowly over the axial position z. This
assumption leads to the following equations for the evolution of the sideband magnitudes [11]:

042 _ ko

—— Era =J5 = As(@bpm(Q, DbtymEr, (109)

2n,
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0A_(2) - . ko
EP Erqp=j5—

>~ As (@b (Q, DbymEr (110)
N

- T
We multiply both terms of Egs. (109), (110) by (ET,l) from the left side and integrate over the

transverse plane. For Eq. (109) we obtain:

2 b 2w b
04,(2) o 2 k - \T -
6+z f f |E7,1| rdrdg =J—272 As(2) by (Q, 2) f f (Er1) MpmErqrdrdg (111)
0
0 0 0 0

The leftintegral equals 1 due to normalization. In the right integral we may express the field vector
and the dielectric perturbation tensor in terms of a 2x1 vector and a 2x2 matrix, respectively. We
obtain the photoelastic overlap integral Qii?m as expressed in Eq. (84). Therefore Eq. (111) may

be written as [11]:

04,(2) _ ko

97 _]Z_nOAS(Z)bpm(-Qr Z)Ql,l,pm (112)

Substituting the expression for b, (2, z) (Eq. (70)) yields:

2
0A4(2) _ . [ koQ7 5, 1 ]
gz = jAs(2) |] S

P(Q,2) 113
813 cpolymQpm 1-2j 0=y (113)

Tpm

The expression in square brackets is exactly the opto-mechanical coefficient as defined in Eq. (97).

We get [11]:

04, (2)
0z

= jyl,l,pm(Q)P(-Q' Z)Ag (Z) (114)

Similarly, for the lower sideband we obtain:

J0A_(2)
0z

= jyf,l,pm(Q)P*(Qf Z)As(z) (115)

We now assume that the photoelastic scattering of the probe wave is comparatively small, so that

|AJ_r(z)|2 & |As(2)|?. Therefore, the magnitude of the input probe wave changes very little
Ag(z) = A4(0). In addition, we assume that the beating power P(Q) is position independent as
well. At that limit, Egs. (114) and (115) are readily solved:
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A (L) = jy1,1pm(QP(Q)A;(0)L (116)
A_(L) = jyi1,pm QP (Q)As(0)L (117)
Here L is the total fiber length.
The total magnitude of the probe wave at the end of the fiber is given by:

Arotar(L) = A5(0) exp(—jwst) + A, (L) exp(—j(ws + D)t) + A_(L) exp(—j(ws — D)t)

(118)
+c.c
We substitute Egs. (116), (117) and obtain:
Atotal (L) = Ag(0) exp(—ja)st)[l + j¥1,1,pmPL exp(—jQt) + jy11pmP L exp(th)] (119)
+ c.c = Ag(0) exp(—jwst)[1 + j(y1,1pmPL exp(—jQt) + c.c)| + c.c
We use the following approximation for ¢ « 1:
exp(jo) ~ 1 +jop (120)
Assuming that |y1 1 pm ()P (Q)L| < 1, Eq. (119) becomes:
Atorar(L) = As(0) exp(—jwst) explj(y1,1,pmPL exp(—jQt) + c.c)| + c.c (121)

We see from Eq. (121) that the sideband field components manifest in phase modulation of the
original probe wave. The phase accumulation associated with intra-modal forward SBS

propagates along the fiber at acoustic frequency  and wavenumber K, and is given by:
A@pm (Q, L, t) = v1,1,pm(QP(Q)L exp(KL — jQt) + c.c (122)

The probe wave also acquires phase modulation due to the Kerr effect, which is independent by
the frequency () [33]. Hence, the total nonlinear coefficient observed in measurements is

composed of both opto-mechanical and Kerr nonlinearity:

Ytotal(Q) = Vl,l,pm(Q) + Ykerr (123)
And the total observed phase accumulation is given by:

A(ptotal(ﬂi Lt) = Yeotat (VP (Q)L exp(]'KL _j-Qt) t+c.c (124)
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3.5.3. Polarization rotation of probe waves
In the previous section we addressed the case in which the optical probe is spatially aligned with
the pump waves, and show that the acoustic wave induces phase modulation to the probe wave.
We now consider the general case in which the probe is sent in an arbitrary spatial orientation,

which may be referred to as an arbitrary state of polarization.

Without loss of generality, we assume that the optical mode guiding all participating fields is in
the HE category. The following derivation is similar for the EH category. The optical mode exhibits
two spatial orientations, which are denoted as “even” and “odd”. For a given azimuthal order I,

the modal orientations are obtained from Eq. (15):
Ef1(r,®) = Gy (n)[cos(ip) # — sin(l¢) @] (125)

E}’,l (r,¢) = G, (r)[sin(lp) 7 + cos(Ip) P] (126)

Here G, () is the transverse radial profile of the optical mode 1, as obtained in Eq. (16). A general

optical field in the given mode is composed of both orientations:

Ery(r, @) = AEf1(r,¢) + AER1 (r, ¢) (127)
Here A, and A, are arbitrary coefficients, satisfying [4,|? + |4,]% = 1.

Two pump waves in an intra-modal process stimulate guided acoustic modes with azimuthal
orders p that equal either 0 or 21 (if [ # 0). Therefore, the pumps may excite the Ry, and TRy;
acoustic categories (like SMFs, the T,,, category cannot be addressed through intra-modal

interactions). The probe wave may be scattered and modulated by both acoustic categories.

We rearrange the photoelastic overlap integral (Eq. (83)) in the intra-modal case:

2t b

PE
Qi,l,zzm = f f[.“rr,mezl + #(bq’),me(%l + Zﬂrq’),merlE(pl]rdrdqb (128)
0 0

We first consider the photoelastic scattering by the radial acoustic modes R,,. Given the radial
symmetry of the material displacement, we obtain ;.4 o = 0. Moreover, pyr om and Ugg om
depend only on the radial component r. Therefore, the photoelastic overlap integrals for spatial

even and odd orientations are given by:

43



2w b

= | [ G0 bomom (1) c05*A8) + gy om () sin? (i) (129)
0 0
2w b

= [ [ 620 lrmom@) 5029) + hppon(r) cos?@@rarap  (130)
0 0

Since both integrals of sin?(l¢) and cos?(l¢) over the azimuthal component equal 7, we obtain

that Qiﬁf;o);flz ﬁEo),fl Therefore, an optical probe propagating in an arbitrary state of

polarization accumulates the same phase modulation induced by the R,,, modes, regardless of

its initial orientation.

We now consider the induced modulation from the TR, acoustic modes (I # 0). The overlap

integrals for even and odd orientations are given by:

2t b
Qiil;)ifm = f —[ Glz (T) [,U.rr'ZLm(T, ¢) COSz(ld)) + Hpgp,21m (T', ¢) Sin2 (l¢) (131)
0 o
— Urgp21m (T, ¢)Sin(2l¢)]rdrd¢
2t b
Qiil;)ig‘n = J -[ G12 @) [.urr,zl,m(r' b) sin? (lp) + ‘u¢¢’21’m(r’ ) COSz(l(;b) 132
0 o
+ trgp 20m (T, ¢)Sin(2l¢)]rdrd¢
Since cos?(l¢g) + sin?(l¢p) = 1, summing Egs. (131), (132) together yields:
2w b
QPBNe 4 QB0 — f f G2 [ty 20m (T D) + g 21m (1 D) |relrdp (133)
0 0

The dielectric tensor components fyr21.m (7, @), Ugpgp 20m (T, P) exhibit azimuthal symmetry of

p = 2l. Therefore, the integral in Eqg. (133) vanishes, and we obtain:

Q(PE),O — _Q(PE),e (134)

1,1,2l,m 1,1,2l,m

Eqg. (134) states that probe waves in the even and odd orientations accumulate phase modulations
that are equal in magnitudes but of opposite signs. Phase differences between the two states of

polarization manifest in photoelastic birefringence which propagates along the fiber at frequency
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Q and wavenumber K. This induced birefringence rotates the polarization of a general probe field

with any other, arbitrary spatial orientation.

Polarization rotation of probe waves may also occur through optical power coupling between
different modes within the same LP group. For example, the LP;; group consists of the
TEy,, TMy, modes with azimuthal order 0, and the HE,; mode with azimuthal order 2. All optical
modes are launched together in intra-modal forward SBS as either pumps or probe. Through this
process, acoustic waves stimulated by the pumps may couple between the corresponding modal
components of the probe. For example, optical power might be exchanged between the TMy;
and the HE,; mode, thus changing the total transverse profile of the electric field vector and
rotating its polarization. Moreover, different modes within the same LP group may be scattered
by the same acoustic mode. However, their phase modulations are different since they are
determined by the specific optical mode (see Eq. (83)). Different phase accumulations also

manifest in polarization rotation of the total probe field.

3.5.4. Coupling of power between pump waves
In this section we consider the inter-modal optical power coupling between the two pump waves
that stimulate the acoustic waves in the first place. For convenience we bring again the expression

of the two pumps co-propagating at optical modes 1 and 2 (Eq. (46)):
- = . R 1
Ei(r,¢,z,t) = A1 (2)Er (1, P) exp [],812 —j (wp + EQ) t] +c.c (135)

5 5 1
Ey(r,¢,z,t) = Ay(2)Er (7, @) exp [j[)’zz —j (wp - EQ) t] +c.c (136)

Without loss of generality, in Egs. (135), (136) we assumed that the optical mode 1 is the higher
frequency tone and mode 2 is the lower frequency one. The pump waves stimulate guided
acoustic modes at frequency Q and wavenumber K = 8; — f3,. The acoustic modes, in turn,

induce dielectric perturbations which scatter the pump waves and couple between them.

The nonlinear polarization associated with the pump waves and with a TRy, acoustic mode is

given by:

ﬁp",’,ﬁ (1, ¢, 2,t) = goAep (1, @, 2, 1) [El (r,¢,z,t) + E,(r, ¢, 2, t)] (137)
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We substitute Eqgs. (76), (135), (136) into Eq. (137) and obtain two polarization terms at

. 1
frequencies w, £ -Q:
2

- =3 1
P;V:ll = €0A2(2)bym (Q, 2) Py (1, ) E7 2 (1, @) exp [j(ﬁz +K)z—j (wp + EQ) t] +c.c (138)
'2

PY 1 = ey (Db (O ity 9)Ers . exp [y — 02 = (w0, = 50) ]
pm-3 ' 2 (139)

+c.c

The nonlinear polarization terms drive a pair of nonlinear wave equations for the two pump fields:

(0 +39)°
2 a2z @329 140
VEE) + BPEy = -5 P (140)
0 ‘2
1 2
e (@-39) 141
V2E2+ﬁ%E2=—TP§,ﬁ_1 (40
’2

We notice that the nonlinear polarization term which drives Eq. (140) is governed by Ez and the

term driving Eq. (141) is determined by El. Therefore, the optical pump fields are coupled
together through the acoustic wave. Moreover, the optical fields and the nonlinear polarization
terms are phase-matched in both equations. We solve the nonlinear equations assuming that the
complex magnitudes A; ,(z) vary slowly over the axial position z. We obtain the following

equations [11]:

d41(2) - k -

alz Erq =] T&Az(z)bpm(ﬂ' Z)ﬂmeT,z (142)
04,(2) - k X -

622 Er, =] 2_730141 (Z)bpm('Q" Z)ﬂmeT,1 (143)

We multiply both terms of Eqgs. (142), (143) by the transverse profiles of the optical modes

- T
(ET,l,Z) respectively and integrate over the transverse plane. Following the procedure of section

3.5.2 we get [11]:

0A:(z) . ko

dz =] Z_nOAZ(Z)bpm(Q: Z)Ql,z,pm (144)
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0A(2) _

. kO *
97 J Z_nOAl(Z)bpm(Qw Z)Ql,z,pm (145)

Substituting the expression for by, (€, z) (Eq. (70)) we obtain:

0A

D) s (P, 252 (146)
0A

20 o @P* (@, A (2) (147)

The coupled wave equations can be brought to describe the evolution of the two optical power
2
levels. We substitute P; ,(z) = 2nocso|A1'2 (Z)| respectively and P(Q, z) = 2nycegAq(2)A5(2).

We obtain [11]:

aPS EZ) = —2Im{yy, 2 pm (D}P1 (2) P, (2) (148)
aPa2 iZ) = 2Im{y1 2. pm (D}P1(2)P,(2) (149)

The imaginary part of y; 5 ,m(Q) is positive for all Q. Eqgs. (148), (149) therefore signify the
stimulated forward Brillouin amplification of the lower frequency pump field EZ at the expense of

the higher frequency one El. Monitoring the power transfer between the pump waves may reveal

the inter-modal forward SBS spectrum of the two specific optical modes 1 and 2.
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4. Numerical analysis

The parameters of the step-index few-mode fiber used in numerical analysis of forward SBS

processes are listed in the following table:

Parameter Value [Units]
ny 1.461 [RIU]
Ny, N 1.445 [RIU]
a 4.8 [um]
b 62.8 [um]
Po 2200 [kg/m?3]
vy 5970 [m/s]
Vg 3736 [m/s]
D11 0.121
D1 0.27

Table 1 — Parameters of the step-index FMF used in the numerical calculations
The parameters in table 1 were fitted based on the few-mode fiber used in experiments. The V
parameter of the fiber at a vacuum wavelength of 1550 nm is 4.196, and it supports the LP; and
LPy, modes and the LP;; and LP,; mode groups. The mode multiplexers used in our experiments
supported the selective coupling of light to the LPy; mode, LP,, mode, and LP;; group only,
hence the LP,; mode group was not considered in the numerical calculations. The effective
indices for the LP,; mode, LP,, mode, and LP;; mode group are 1.458, 1.446, and 1.453 [RIU],
respectively. The differences between the effective indices of the three constituent modes of the

LP;, group are below 5x10~° RIU.

The calculated F-SBS spectra for both intra-modal and inter-modal processes in a FMF are
presented below. In the following calculations, we assume that the fiber was uncoated with air
outside the cladding. The modal linewidths of the acoustic modes T},,,, were fitted based on

experiments [11].
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Figure 17 — Calculated opto-mechanical spectra |y (2/2m)| of intra-modal forward SBS between two optical waves in
the fundamental LP,; mode. (a): Scattering through radial acoustic modes R,,. (b): Scattering through torsional-
radial acoustic modes of two-fold azimuthal symmetry TR,,,.

Figure 17(a) presents the calculated opto-mechanical spectrum |VLP01,LP01,0m(Q)| of intra-modal
forward SBS between two optical waves in the fundamental LPy; mode, through the radial
acoustic modes Ry,,. Figure 17(b) shows the corresponding spectrum |VLP01,LP01,2m(Q)| for the
same optical mode and the TR,,, acoustic modes. Both spectra are very similar to those of the
corresponding processes in standard SMFs [7-11]. Forward SBS through the R,,, modes is

stronger, with VL(%LLPOLOm reaching 20 Wxkm™ at frequencies near 300 MHz. The peak

magnitudes y,f%LLPOLOm decrease monotonously beyond that frequency. The radial modes are
purely dilatational, with regular spacing between their resonance frequencies (Figure 17(a)). The
spectrum of Figure 17(b) consists of both predominantly dilatational and shear-like TR,,,, acoustic
modes, with overall irregular spacing between peaks [44,45,56]. The |yLP01'LP01’2m (Q)| spectrum
also decreases considerably beyond acoustic frequencies of 500 MHz. At higher frequencies, the
radial dependence of the material displacement profile ﬁ’pm changes sign within the spatial extent

of the fundamental optical mode, and the spatial overlap integral largely cancels out.

Figure 18 presents the opto-mechanical spectra of intra-modal F-SBS in the L Py, mode. Ry, and
TR,,, acoustic modes are considered in panels 18(a) and 18(b), respectively. Note that both
spectra are plotted on logarithmic scales. The peaks of the radial modes spectrum

|pr02_Lp02_0m(Q)| reach a maximum at 300 MHz and decrease by nearly two orders of magnitude

towards 600 MHz. The peak magnitudes yL(,?gZ,LPOZVOm increase again towards acoustic
frequencies of 1.2 GHz. Compared with the fundamental LP,; mode, the radial profiles of the

displacement vectors of a high-frequency acoustic modes match better with the higher-order
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LPy, mode. The |yLP02_LP02,2m(Q)| spectrum of panel 18(b) consists again of dilatational as well
as shear TR,,,, modes. In the 500-900 MHz range, the spectrum is dominated by the shear modes,
identified by the closer spacing vs/(2b) between adjacent peaks. In that frequencies range, the
shorter-period radial oscillations in the shear modes better match the radial profile of optical
mode LP,, than those of the dilatational ones. The dilatational modes, noted by larger frequency

spacing of approximately v; /(2b), become dominant beyond 1 GHz frequency.
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Figure 18 — Calculated opto-mechanical spectra |y (2/2m)| of intra-modal forward SBS between two optical waves in
the LP,, mode. (a): Scattering through radial acoustic modes R,,. (b): Scattering through torsional-radial acoustic
modes of two-fold azimuthal symmetry TRy,.

Figure 19 shows the calculated spectra of inter-modal forward SBS between the LPy; and LPy,
modes. In this figure, the imaginary part of the gain coefficient Im{VLPOl,LPOZ,pm(Q)} is plotted,
rather than its absolute value as in Figures 17 and 18. The experimental procedure for the
characterization of inter-modal scattering processes measured the optical power exchange
between the optical waves, which is determined directly by the imaginary part [11] (see section
5.2). Here too, only the R,, and TR,,, acoustic modes may be stimulated. Panel 19(a) presents
the Im{y,po1,Lp02,0m ()} spectrum, and Im{y;po1 1poz2m ()} is plotted in panel 19(b). Both
spectra differ from those of the intra-modal scattering processes through the same acoustic
modes, as seen in Figures 17 and 18. The inter-modal scattering spectrum through the TR,,,
modes is dominated by shear modes up to 700 MHz frequency and by dilatational modes above

that frequency.
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Figure 19 — Calculated opto-mechanical gain coefficients Im{y (2/2m)} of inter-modal forward SBS between one
optical wave in the LPy; mode and another in the LPy, mode. (a): Coupling through radial acoustic modes Ry, (b):
Coupling through torsional-radial acoustic modes of two-fold azimuthal symmetry TR .

Figure 20 presents calculated spectra of forward Brillouin scattering interactions driven by optical
fields in the LP;; mode group. The group consists of the TE,;, TMy; and HE,; exact modal
solutions. The experimental setup only allows for the coupling of light to all three modes together,
and it does not separate between them. Panel 20(a) presents the |VLP11,LP11,0m(Q)| forward
Brillouin scattering spectrum through the radial R,,, acoustic modes. The spectrum includes
contributions of intra-modal scattering within each of the three modes within the LP;; mode
group. The radio frequency phases of the three contributions may vary. In the example shown
here, the mean value of the three terms is presented. The spectrum extends towards higher
frequencies than those of the corresponding process in the fundamental LPy; mode (Figure
17(a)). The frequencies range is similar to that of the intra-modal scattering in the LP,, mode
(Figure 18(a)). The forward Brillouin scattering spectrum |yLP11,LP11'2m(Q)| for TR,,, acoustic
modes is shown in Figure 20(b). The spectrum differs from those of TR,,, modes stimulated by
other optical modes combinations, as presented earlier. It is dominated by dilatational modes

above acoustic frequencies of 800 MHz.

Optical waves within the LP;; modes group can stimulate additional classes of acoustic modes,
beyond the Ry,,, and TR,,,, discussed thus far. Figure 20(c) shows the spectrum |pr11’LP11’4m(Q)|
of forward Brillouin scattering through the four-fold symmetric TR,,, acoustic modes. These
modes can be driven by two pump fields in the HE,; optical mode within the LP;; group. This
class of acoustic modes cannot be observed in forward Brillouin scattering over SMFs. Shear
modes within the TR,,,, category dominate the spectrum up to 700 MHz, giving way to dilatational

modes at higher frequencies. The cut-off frequencies (,,, of the TR,,,, modes are similar to those
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of the TR,,,, modes. However, the (1, frequencies are consistently lower than the corresponding
Q. values by 2nix1-2 MHz. These offsets are used to identify peaks associated with the TRy,

modes in experimental measurements (see section 5.3).
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Figure 20 — Calculated opto-mechanical spectra |y (£2/21)| of forward SBS between optical waves within the LP;

mode group. (a): Scattering through radial acoustic modes R ,,. (b): Scattering through torsional-radial acoustic

modes of two-fold azimuthal symmetry TR,,,. (c): Scattering through torsional-radial acoustic modes of four-fold
azimuthal symmetry TRy,,. (d): Scattering through purely torsional acoustic modes Top,.

Inter-modal forward Brillouin scattering between one optical field in the TEy; mode and another
in the TMy; mode within the LP;; group can stimulate purely torsional T,, acoustic modes as
well. The calculated spectrum is shown in Figure 20(d). The process couples optical power
between the TE,; and TM,; components of the LP;; mode group. The cut-off frequencies of the
Tom are higher than those of adjacent TR,,,, modes by 2rx1-2 MHz. The peak magnitudes of the
opto-mechanical stimulation of T,,, modes are highest near 500 MHz frequency. Material

displacement in the T,, modes includes shear wave motion only.

Lastly, Figure 21 shows the calculated spectra of inter-modal forward Brillouin scattering between
one optical wave in the fundamental LP,; mode and another in the LP;; modes group. The

process involves the stimulation of the TR;,,, acoustic modes of first-order azimuthal symmetry
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(panel (a)), and the three-fold symmetric TR;,, modes (panel (b)). Both classes of modes are

inaccessible to forward Brillouin scattering in SMFs. The peak magnitudes of
Im{yLPOl_Lpllllm(Q)}, corresponding to the TR, modes, are four times stronger than those of

Im{VLP01,LP11,3m(Q)}: representing the TR3,,, modes. The spectrum of TR4,, modes is dominated

by the dilatational ones.
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Figure 21 — Calculated opto-mechanical gain coefficients Im{y (2/2m)} of inter-modal forward SBS between one
optical wave in the LPy; mode and another in the LP;; mode group. (a): Coupling through torsional-radial acoustic
modes T Ry, of first-order azimuthal symmetry. (b): Coupling through torsional-radial acoustic modes of three-fold

azimuthal symmetry TR3,,.
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5. Experimental setup and results

5.1. Experimental setup for intra-modal measurements

Schematic illustration of the experimental setup for the characterization of intra-modal F-SBS in
a few-mode fiber is shown in Figure 22 [11,75]. A laser diode of 1550 nm wavelength was the
source of pump optical waves used to stimulate acoustic modes in the fiber. Pump light passed
through an electro-optic intensity modulator, driven by a sine wave voltage of variable radio
frequency Q from the output port of an electrical vector network analyzer. The modulated pump
wave was amplified in an erbium-doped fiber amplifier to an average optical power of 0.2-0.4 W
and launched to one of the three input ports of a first mode-division multiplexer. In some of the
measurements, a polarization scrambler was used in the pump branch. The magnitude of the

pump power modulation P, () was calibrated for each radio frequency.

The mode multiplexer coupled the input pump wave to either the fundamental LP,; mode, the
LPy, mode, or the LP;; mode group. The FMF under test was 5 meters long, and its parameters
were specified in the previous Section 4. The fiber was stripped off its protective polymer coating
to enhance forward SBS interactions. The coating was removed through mechanical stripping and
overnight immersion in acetone for the removal of residues. The output end of the fiber under
test was connected to a second mode division multiplexer which separated the LPy; mode, the
LP,, mode, and the LP,; group to three different physical output ports. An optical bandpass filter

blocked the pump wave at the mode multiplexer output.

A continuous-wave signal from a second laser diode was used for monitoring the stimulated
acoustic waves through photoelastic scattering. The signal wavelength was 1532 nm and its
optical power was 2 mW. The signal wave was coupled with the modulated pump and launched
into the same input port of the mode division multiplexer. The stimulated acoustic waves
imprinted phase modulation and/or polarization rotation at radio frequency Q on the co-
propagating signal wave [11]. The optical bandpass filter at the fiber under test output was

adjusted to transmit the signal wave.

The output signal was analyzed through two detection channels. In one channel, the output signal
was connected through a directional coupler to form a Sagnac interferometer loop [75].
Photoelastic phase modulation of the signal wave was converted to an intensity reading at the
loop output [75]. Polarization controllers were used to maximize the output intensity modulation
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[75]. The output signal wave was detected by a photo-receiver of 1.6 GHz bandwidth, and the
obtained voltage was connected to the input port of the electrical vector network analyzer. The
analyzer measured the transfer function S(Q) of radio frequency voltage between the modulation
of the optical pump wave and that of the detected signal wave. Traces were acquired with
frequency steps of 10-20 kHz and an intermediate frequency bandwidth of 100 kHz, and they were

averaged over 200 repetitions.
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Figure 22 — Schematic illustration of the experimental setup used in characterization of intra-modal F-SBS in a few-
mode fiber. EOM: Mach-Zehnder electro-optic intensity modulator; EDFA: erbium-doped fiber amplifier; MDM: mode
division multiplexer; PC: polarization controller.

The frequency response of the forward SBS process was estimated by the ratio H(Q) =
5(Q)/P,(Q) [11,75]. The polarization of the pump wave was scrambled during data acquisition
at hundreds of kHz rates. In that manner, the contributions of all TR modes to the photoelastic
modulation were canceled out of the collected data [76]. The measured response H({)) was

affected by the intra-modal F-SBS through the radial modes R, only.

The signal wave at the output of the optical bandpass filter was split to a second detection channel
which was based on a polarizer. A polarization controller was used to align the signal state of
polarization to 50% transmission of optical power to the polarizer output. Photoelastic
polarization rotation of the signal wave was converted to intensity modulation at the polarizer
output [56]. Polarization rotation takes place through torsional-radial modes of all orders, but not
through radial modes [76]. The output signal was routed to an identical photo-receiver and the
detected voltage was analyzed by the vector network analyzer using the same settings. The
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transfer function H(Q) = S(Q)/P,(Q) of radio-frequency voltage in this case is related to the
intra-modal F-SBS through all TR,,, modes, of all azimuthal orders [76]. The polarization of the

pump wave was not scrambled when using this detection channel.

In addition to forward SBS, the pump wave also induced phase modulation and polarization
rotation of the signal via the Kerr effect [77]. The response of the Kerr effect is that of an
immediate impulse, whereas that of photoelastic modulation extends over microseconds scale.
The contribution of the Kerr effect may be effectively removed from the measurements using
time gating, which eliminates the first few nanoseconds of the response [75]. Such gating is often
performed by a synchronized optical switch within the experimental testbed [75]. Alternatively,
when the output signal is acquired in the time domain, gating can be implemented through offline
processing [36,77]. In this work, the F-SBS processes were monitored in the frequency domain,
and time gating could not be implemented directly. Instead, the inverse-Fourier transform of the
complex-valued H(Q) was calculated offline to obtain the corresponding time-domain impulse
response h(t). The impulse response was then gated to remove the contribution of the Kerr
effect, and the Fourier transform H () of the gated h(t) was calculated for further data analysis.
The obtained H () is proportional to the intra-modal F-SBS coefficient Y1,1,pm (Q), through either

the radial or the torsional-radial modes.

5.2. Experimental setup for inter-modal measurements

Figure 23 presents a schematic illustration of the setup for characterization of inter-modal F-SBS
in the same few-mode fiber [11,65]. Light from a laser diode source of 1550 nm wavelength was
split into two paths. Light in the upper branch passed through a single-sideband electro-optic
modulator, driven by voltage of variable radio frequency ) from the output port of a microwave
generator. The optical frequency of the upper branch wave was thereby offset by (. The light
wave was then intensity-modulated in an electro-optic Mach-Zehnder modulator, driven by a sine
wave voltage of frequency f; = 200 kHz from one output port of a dual-channel lock-in amplifier.
The modulated wave was amplified to an average optical power of 0.1 W and launched to the

few-mode fiber through one input port of the mode-division multiplexer.

The optical wave at the lower branch was intensity modulated at frequency f, = 503 kHz in a
second electro-optic Mach-Zehnder modulator, driven by voltage from a second output port of

the lock-in amplifier. The lower branch wave was amplified to 0.5 W average power and launched
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through the fiber under test through a second, different port of the mode division multiplexer.
Inter-modal forward SBS may lead to the coupling of optical power between the two input waves,
depending on their frequency offset Q. Such coupling manifests in intensity modulation of both

waves at frequencies f; + f, [11,65].
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Figure 23 — Schematic illustration of the experimental setup used in characterization of inter-modal F-SBS in a few-
mode fiber. EOM: Mach-Zehnder electro-optic intensity modulator; SSB: single-sideband electro-optic modulator;
EFDA: erbium-doped fiber amplifier; MDM: mode division multiplexer; PC: polarization controller.

Light from one of the output ports of the second mode division multiplexer, located at the far end
of the fiber under test, was detected using a photo-receiver of 20 GHz bandwidth. The detected
voltage was analyzed at the input port of the lock-in amplifier, and the magnitude of the f; + f5
frequency component was monitored. That component is proportional to the coupling coefficient
of inter-modal forward SBS, Im{y(Q)} [65]. The coupling of power may take place through all
acoustic modes, radial and torsional-radial ones. Note that the Kerr effect does not induce
coupling of optical power between the two fields, and its removal was not required as part of this

protocol.

5.3.  Results: forward Brillouin scattering spectra in a few-mode fiber

2
Figure 24(a) shows the measured normalized spectrum |yLP01’LP01’0m(Q)| of intra-modal
forward SBS in the fundamental LP,; mode of a few-mode fiber, through the radial acoustic
modes Ry,,. The corresponding calculated spectrum is plotted as well (see Figure 17(a)). The

agreement between experiment and calculations is very good. The spectrum is very similar to that
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of F-SBS through the same acoustic modes in single-mode fibers [7-11], as expected. The
linewidths of the spectral peaks increase with frequency, from 100 kHz for the peak observed at
80 MHz up to about 1 MHz at the resonance frequency of 700 MHz. The linewidths are broader
than previously observed in uncoated SMFs, and they scale linearly with acoustic frequency. Such
scaling suggests broadening due to non-uniformity of the cladding diameter along the fiber under
test [74]. Figure 24(b) presents the normalized measured and calculated spectra of intra-modal
scattering in the fundamental optical mode through torsional-radial acoustic modes. The
spectrum consists of two-fold symmetric TR,,,;, modes only. Here too, the experimental results

agree with calculations and with known results in SMFs [7-11]. Both dilatational and shear modes

are observed.
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Figure 24 — Measured (solid, blue) and calculated (dashed, red) normalized spectra |VLP01,LP01,pm ) |2 of intra-modal
forward SBS in the fundamental LPy; mode of a few-mode fiber. (a): Radial acoustic modes Ry,y,. (b): Torsional-radial
modes. The spectrum consists of the TR, modes only.

Figure 25 shows the measured and calculated normalized spectra of intra-modal forward SBS in
the higher-order LP,y, mode. Here too, the process takes place through Ry, (panel (a)) and TR,,,
acoustic modes (panel (b)). Modes of both categories are observed up to a frequency of 1.8 GHz,
much higher than those of corresponding intra-modal scattering in the fundamental mode. The
peak magnitudes of the dilatational Ry, modes pass through a local minimum at acoustic
frequencies near 800 MHz, due to poor spatial overlap with the optical mode. The TR, modes
spectrum at that frequency range is dominated by the shear modes, identified by their closer
spectral spacing, which exhibit better spatial overlap with the optical mode. The dilatational

modes dominate the TR,,, spectrum beyond 1.1 GHz frequency. The experimental observations

are in good agreement with calculations.
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Figure 25 — Measured (solid, blue) and calculated (dashed, red) normalized spectra |VLP02,LPoz,pm ) |2 of intra-modal
forward SBS in the LPy, mode of a few-mode fiber. (a): Radial acoustic modes R,,. (b): Torsional-radial modes. The
spectrum consists of the TR, modes only.

Next, the normalized spectra of forward SBS between two optical fields in the LP;; group are

presented. Figure 26 shows the spectrum of scattering through the radial R, modes,

|yLP11,LP11’0m(Q)|2. The measurements meet expectations. Figure 27(a) shows the
corresponding spectra for torsional radial modes. The spectrum is dominated by the two-fold
symmetric TR,,, modes, and it matches well with calculations. This time, however, many of the
spectral peaks corresponding to the TR,,,, modes are accompanied by adjacent secondary peaks,
at frequencies that are 1-2 MHz lower. The second set of peaks represents the stimulation of the
four-fold symmetric TR,,, modes. The observed frequency separation matches the difference
between calculated cut-off frequencies (Q5,,, — Q4,,,)/27. The TR,,, acoustic modes are driven
by optical fields in the HE,; component of the LP;; group. They do not appear in the spectra of
torsional-radial modes for intra-modal forward SBS in the LPy; and LP,, modes. Four examples
of pairs of peaks are shown in Figures 27(b), (c), (d) and (e), yet other similar pairs were observed
in the frequencies range of 200-400 MHz. The results signify the first observation of the TRy,

class of modes in forward Brillouin scattering in fibers.
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Figure 26 — Measured (solid, blue) and calculated (dashed, red) normalized spectra |y,_p11‘,_p11‘0m ) |2 of intra-modal
forward SBS in the LP;; modes group of a few-mode fiber, through the radial acoustic modes Ry,.
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Figure 27 — (a): Measured (solid, blue) and calculated (dashed, red) normalized spectra of intra-modal forward SBS in
the LP;1 modes group of a few-mode fiber, through torsional-radial acoustic modes. The spectrum is dominated by
the TR,,, modes. (b), (c), (d) and (e): Magnified views of the experimental trace of panel (a) (blue), alongside the
measured, normalized torsional-radial modes spectrum of intra-modal scattering in the LPy; mode (red, repeated
from Figure 24(b) as a reference). The torsional-radial acoustic modes spectrum following stimulation through the
LP;; modes group exhibits secondary peaks, which do not appear in the corresponding LPy, process. The frequencies
of the secondary peaks are lower than those of the primary ones by 1-2 MHz. The secondary peaks represent the
stimulation of TR 4, acoustic modes. Four examples of pairs of peaks are shown in the figure, however others were
observed as well.
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Calculations also predict the stimulation of purely torsional T, acoustic modes by one field
component in the TEy; mode and another in the TM,; mode within the LP;; group (see Figure
20(d)). The stimulation is accompanied by the coupling of optical power between the two
components and may lead to polarization rotation of the combined LP;, polarized field. The cut-
off frequencies of the Ty, acoustic modes are higher than those of adjacent TR,,, modes by
2nix1-2 MHz (as opposed to the cut-of frequencies of the TR,,,, which are lower than those of
the TR,,, by comparable offsets). We were unable to resolve the stimulation of Ty, acoustic
modes in our measurements. The division of the input field among the three constituent modes
of the LP;; group is not controlled. It is possible that the magnitudes of the launched TE; and
TM,, fields were weak, and that the polarization rotation inducted by the T;,, modes was not

large enough to identify alongside the much stronger response of adjacent TR,,, modes.

The measured normalized coupling coefficient Im{y (Q)} of inter-modal forward SBS between the
LP,, optical mode and the LP;; mode group is presented in Figure 28. The spectrum consists of
stimulated TRy,,, acoustic modes of first-order azimuthal symmetry. Forward SBS through this set
of acoustic modes is also observed for the first time in this work. Like the TR,,,, modes observed
in Figure 27, the TRy, set of modes cannot be stimulated in SMFs. The cut-off frequencies Q4,,
of these modes differ from Q,,, or 5, by tens of MHz, hence the observed peaks are distinct.
The Ry, and TR,,, acoustic modes were not stimulated in this experiment, as expected. The
spectrum is dominated by dilatational modes, although shear modes are observed as well at

acoustic frequencies below 600 MHz.

Our analysis suggests that the inter-modal scattering process would also excite the TR, class of
acoustic modes. However, the opto-mechanical coefficients for these modes are considerably
weaker than those of the TR4,, modes (see Figure 21), and the cut-off frequencies Q,,,, and Qz,,
of the two classes differ by only 2rnix1-2 MHz. We were unable to resolve the stimulation of TR3,,

modes in our experiments, and their study remains for future work.
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Figure 28 — Solid blue — measured normalized gain coefficient of inter-modal forward SBS between one optical wave in
the fundamental LPy, mode and another in the LP;; mode group. Dashed red — calculated normalized gain coefficient
Im{]/LPOLLplle} of inter-modal forward SBS between the two optical modes through the TR, acoustic modes.
Agreement with experiment is very good. The weaker stimulation of TR3,, modes, suggested by the analysis, was not
observed in the measurements.

The normalized spectrum of inter-modal forward SBS between the LPy; and LPy, optical modes
is presented in Figure 29(a). The measured response consists of the Ry, and TR,,, acoustic
modes, and it agrees well with expectations. Careful comparison between the response of Figure

29(a) and the spectra of Ry, and TR,,, modes obtained through intra-modal scattering reveals a

significant difference. The resonance frequencies Qg;,)l and Qg},)l of the inter-modal spectrum are
consistently higher than those observed through intra-modal scattering. Examples are shown in

Figures 29(b), (c), (d) and (e). The difference is due to the larger axial wavenumber K of inter-

R) _

modal electro-strictive stimulation (see section 3.2.4). Figure 30 plots the difference AQ) = me

Q,m between the inter-modal and intra-modal resonance frequencies, as a function of (). The
difference is inversely proportional to (, and it follows the prediction of Eq. (98). The difference

AQ is larger for dilatational modes, due to their higher velocity.
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Figure 29 — (a): Solid blue — measured normalized gain coefficient of inter-modal forward SBS between one optical
wave in the fundamental LPy; mode and another in the LP,, mode. Dashed red — calculated normalized gain
coefficient of the inter-modal scattering process through the R, and TR,,, acoustic modes. Agreement with

experiment is very good. (b), (c), (d) and (e): Magnified view of the measured normalized inter-modal scattering
spectrum (blue), alongside the measured normalized spectra of intra-modal scattering in the fundamental LPy; mode.
In all panels, Ry,, modes are shown in red and TR,,,, modes in green. In panels (b) and (c), the resonance frequencies
of dilatational Ry, modes are higher by 3.4 MHz and 3 MHz respectively than the intra-modal trace. The
corresponding differences for the TR,,, shear modes shown in panels (d) and (e) are 2 MHz and 1.7 MHz, respectively.
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Figure 30 — Circular markers - Measured spectral offsets A /21 between the resonance frequencies of inter-modal
forward SBS through the LPy; and LPy, modes, and the corresponding resonance frequencies of intra-modal
scattering. The experimental uncertainties are due to the measurement resolution of 100KHz. Solid lines — calculated
offsets according to Eq. (98). Modes dominated by their dilatational components are shown in blue, whereas those
that are primarily of shear characteristics are shown in red. The observed spectral offsets agree with analysis. The
offsets are inversely proportional to frequency, and they are larger for the dilatational modes due to their higher
acoustic velocity.

5.4. Sensing demonstration

We have shown in the previous section that forward SBS in few-mode fibers can excite acoustic
waves at higher frequencies than in SMFs, and addresses additional categories of acoustic modes.
In particular, the TR, category has been observed for the first time, with frequencies and modal
linewidths different from those of the Ry, and TR, classes. As discussed in section 1.3, the
forward SBS effect can be used towards sensing of substances outside the fiber [36,56]. Measuring
the F-SBS spectra in few-mode fibers may be utilized to enhance the capabilities of sensing

protocols.

Here | present an example of the inter-modal gain coefficient of the TR;,, modes in the same
bare FMF used above, when immersed in water. Distinction between dilatational and shear
modes is observed: while the linewidths of dilatational TR;,, modes were broadened following
immersion, those of the shear modes remained narrow. These results agree with the previous
observations by our group, using the TR,,,, modes in an SMF [56]. Addressing additional acoustic
frequencies and categories might extend the characterization of the elastic properties of media

outside the fiber, and enhance the application of forward SBS in fiber sensing.
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Figure 31 — Measured inter-modal forward SBS gain coefficient of the T R4,, modes in a bare few-mode fiber immersed
in water (solid blue) and kept in air (dashed black). The linewidths of the dilatational modes (noted by L) are
broadened when immersed in water, whereas the shear modes (labeled S) remain narrow.
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6. Summary and discussion

6.1. Main results

This work extended the study of forward Brillouin scattering in standard, uniform-cladding fibers
to the multi-optical mode regime, through analysis, calculations, and experiment. The process
supports many possible combinations of intra-modal and inter-modal scattering. Acoustic modes
of arbitrary azimuthal orders can be stimulated in the few-mode fiber, as opposed to the R, and
TR, modes only in SMFs. In this work we experimentally demonstrated the stimulation of TR4,,
and TR,,, modes. Unlike polarization maintaining or photonic crystal fibers, the forward SBS

spectra in FMFs are calculated analytically.

The F-SBS spectra of the few-mode fiber extend to higher acoustic frequencies than in SMFs:
resonance frequencies up to 1.8 GHz were observed in the measurements. Further, inter-modal
stimulation in the few-mode fiber excited acoustic modes few MHz above their cut-off
frequencies. The acoustic modes, in this case, may take up axial wavenumbers in the order of 10*
radxm™. Such large wavenumbers can lead to non-reciprocal coupling of signal waves between
spatial optical modes and to narrowband optical isolation, as shown in polarization maintaining

fibers and photonic integrated circuits [63,65].

The effect of media outside the cladding on the acoustic linewidth may differ among classes of
modes [56]. Addressing additional mode groups may enhance the application of forward SBS in
fiber sensing [44,45,56]. The elastic properties of media under test vary with acoustic frequency.
The extension of F-SBS towards higher acoustic frequencies over few-mode fibers would enable

broader characterization of acoustic dispersion.

Both the optical and acoustic waves used in this work carry angular momenta in their orbital
degree of freedom [76]. The forward SBS interactions through specific choices of modes signify
the exchange of orbital angular momentum quanta between the optical and mechanical domains.
These interactions may potentially serve towards the manipulation of quantum states at

cryogenic temperatures.
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6.2. Limitations

In this work, we were not able to resolve the simulation of TR, acoustic modes alongside the
TRy, ones in an inter-modal forward SBS process, even though our analysis suggests that these
modes should have been observed. The difficulty may have to do with the limited signal-to-noise
ratio of the inter-modal measurements protocol, and the small separation between the cut-off
frequencies of the TR;,;, and TR3,,, modes. We also could not observe the stimulation of the Ty,
acoustic modes by optical fields within the LP;; mode group. The monitoring of forward Brillouin
scattering within the LP;; group relies on polarization rotation. It is possible that the rotation
associated with the coupling of light between the TEy; and TM,, field components within the
LP;; group was too weak to be detected. The identification of the T,,, acoustic mode is
challenging due to the presence of adjacent, stronger peaks associated with the TR,,, modes

category. The stimulation of the Ty, and TR3,, will be revisited in future work.

6.3. Future works

While the characterization of forward Brillouin scattering in few-mode fibers has been rather
extensive, it is by no means exhaustive. Even with three-mode fiber available to us, there are
many additional possible combinations for the allocation of input fields to specific modes. For
example, two intra-modal scattering processes can be coupled through a common acoustic mode:
A pair of pump waves in a common optical mode 1 would stimulate the acoustic wave through a
first intra-modal process, and a signal wave in optical mode 2 would be scattered by the same
acoustic wave in a second intra-modal process. We have successfully demonstrated such coupling
between intra-modal forward SBS processes in polarization maintaining fibers [65], and their

exploration over FMFs remains for future study.

Moreover, inter-modal forward SBS is associated with the amplification of one input optical field
at the expense of another [11]. This amplification mechanism has been the basis for a forward
Brillouin laser over polarization maintaining fiber [66] and may support similar lasing in few-mode
fiber as well. The gain bandwidth of forward Brillouin scattering is extremely narrow, only 100 kHz
in bare fibers, hence forward Brillouin lasers can become extremely coherent. The boundary
conditions of acoustic modes make forward Brillouin fiber lasers highly sensitive to their

environment [66]. Compared with polarization maintaining fibers, the few-mode fibers provide
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greater freedom for the choice of modes and the design of forward Brillouin lasers, and their

examination remains for future work as well.

In summary, the study of forward SBS in standard FMFs extends the fundamental understanding
and formulation of the effect, reaches higher acoustic frequencies and additional modal
symmetries, and may find applications in fiber sensing, fiber lasing, non-reciprocal propagation,

and quantum technologies.
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